Skip to Content
Merck
CN
  • Counter Regulation of Spic by NF-κB and STAT Signaling Controls Inflammation and Iron Metabolism in Macrophages.

Counter Regulation of Spic by NF-κB and STAT Signaling Controls Inflammation and Iron Metabolism in Macrophages.

Cell reports (2020-07-02)
Zahidul Alam, Samir Devalaraja, Minghong Li, Tsun Ki Jerrick To, Ian W Folkert, Erick Mitchell-Velasquez, Mai T Dang, Patricia Young, Christopher J Wilbur, Michael A Silverman, Xinyuan Li, Youhai H Chen, Paul T Hernandez, Aritra Bhattacharyya, Mallar Bhattacharya, Matthew H Levine, Malay Haldar
ABSTRACT

Activated macrophages must carefully calibrate their inflammatory responses to balance efficient pathogen control with inflammation-mediated tissue damage, but the molecular underpinnings of this "balancing act" remain unclear. Using genetically engineered mouse models and primary macrophage cultures, we show that Toll-like receptor (TLR) signaling induces the expression of the transcription factor Spic selectively in patrolling monocytes and tissue macrophages by a nuclear factor κB (NF-κB)-dependent mechanism. Functionally, Spic downregulates pro-inflammatory cytokines and promotes iron efflux by regulating ferroportin expression in activated macrophages. Notably, interferon-gamma blocks Spic expression in a STAT1-dependent manner. High levels of interferon-gamma are indicative of ongoing infection, and in its absence, activated macrophages appear to engage a "default" Spic-dependent anti-inflammatory pathway. We also provide evidence for the engagement of this pathway in sterile inflammation. Taken together, our findings uncover a pathway wherein counter-regulation of Spic by NF-κB and STATs attune inflammatory responses and iron metabolism in macrophages.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Iron(II) sulfate heptahydrate, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%