- Measuring translocation of fluorescent lipid derivatives across yeast Golgi membranes.
Measuring translocation of fluorescent lipid derivatives across yeast Golgi membranes.
Phospholipid asymmetry is a fundamental feature of the plasma membrane of most eukaryotic cells and its regulation is linked to diverse physiological processes such as apoptosis and blood clotting [P. Williamson, R.A. Schlegel, Biochim. Biophys. Acta 1585 (2002) 53-63; R.F. Zwaal, A.J. Schroit, Blood 89 (1997) 1121-1132]. In addition, the phospholipid translocases (flippases) that are thought to establish asymmetry are also implicated in vesicle-mediated protein transport throughout the secretory and endocytic pathways [T.R. Graham, Trends Cell Biol. 14 (2004) 670-677]. However, the biochemical properties of phospholipid translocases in membranes of the Golgi complex and endosomes have received much less attention than translocases in the plasma membrane. We describe here a method for purifying yeast Golgi membranes and assaying an ATP-dependent phospholipid translocase activity in these membranes using fluorescent lipid analogues. This assay detects ATP-dependent translocation of labeled phosphatidylserine across late Golgi membranes, which requires the activity of a P-type ATPase called Drs2p [P. Natarajan, J. Wang, Z. Hua, T.R. Graham, Proc. Natl. Acad. Sci. USA 101 (2004) 10614-10619].