Skip to Content
Merck
CN
  • Development of a high-coverage metabolome relative quantitative method for large-scale sample analysis.

Development of a high-coverage metabolome relative quantitative method for large-scale sample analysis.

Analytica chimica acta (2020-04-08)
Zhi Zhou, Yanhua Chen, Yang Gao, Nan Bi, Xiaofei Yue, Jiuming He, Ruiping Zhang, Luhua Wang, Zeper Abliz
ABSTRACT

The development of quantitative metabolomics approaches for future standardized and translational applications has become increasingly important. Data-independent targeted quantitative metabolomics (DITQM) is a newly proposed method providing ion pair information on 1324 metabolites. However, the quantification of more than 1000 metabolites in large sample sizes has still not been implemented. In this study, on the basis of the DITQM concept, scheduled multiple reaction monitoring (MRM) methods for both high-abundant and low-abundant metabolites were established to broaden the quantification coverage, and an open-source program "Quanter_1.0" was coded to facilitate efficient data handling. Our results demonstrated that 1015 metabolites in human plasma met the quantitative requirements and could be relatively determined in an effective manner. The method was then applied to a large-scale sample study of lung cancer consisting of three distinct analytical batches. It was obvious that data quality that originated from quantitative metabolomics was improved, with substantially lower intra- and inter-batch data variation, resulting in a more effective multivariate statistical model. Finally, 26 potential biomarkers of lung cancer were discovered. Collectively, our approach provides a promising tool for quantitative metabolomics research involving large-scale sample sizes and clinical application.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
DL-Valine-d8, 98 atom % D
Sigma-Aldrich
Palmitoyl-L-carnitine-(N-methyl-d3) hydrochloride, 99 atom % D, 98% (CP)