Skip to Content
Merck
CN
  • Nanoparticle interactions with immune cells dominate tumor retention and induce T cell-mediated tumor suppression in models of breast cancer.

Nanoparticle interactions with immune cells dominate tumor retention and induce T cell-mediated tumor suppression in models of breast cancer.

Science advances (2020-04-02)
Preethi Korangath, James D Barnett, Anirudh Sharma, Elizabeth T Henderson, Jacqueline Stewart, Shu-Han Yu, Sri Kamal Kandala, Chun-Ting Yang, Julia S Caserto, Mohammad Hedayati, Todd D Armstrong, Elizabeth Jaffee, Cordula Gruettner, Xian C Zhou, Wei Fu, Chen Hu, Saraswati Sukumar, Brian W Simons, Robert Ivkov
ABSTRACT

The factors that influence nanoparticle fate in vivo following systemic delivery remain an area of intense interest. Of particular interest is whether labeling with a cancer-specific antibody ligand ("active targeting") is superior to its unlabeled counterpart ("passive targeting"). Using models of breast cancer in three immune variants of mice, we demonstrate that intratumor retention of antibody-labeled nanoparticles was determined by tumor-associated dendritic cells, neutrophils, monocytes, and macrophages and not by antibody-antigen interactions. Systemic exposure to either nanoparticle type induced an immune response leading to CD8+ T cell infiltration and tumor growth delay that was independent of antibody therapeutic activity. These results suggest that antitumor immune responses can be induced by systemic exposure to nanoparticles without requiring a therapeutic payload. We conclude that immune status of the host and microenvironment of solid tumors are critical variables for studies in cancer nanomedicine and that nanoparticle technology may harbor potential for cancer immunotherapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
β-Naphthoflavone, ≥98%