Skip to Content
Merck
CN
  • Ochratoxin A secretion in primary cultures of rabbit renal proximal tubule cells.

Ochratoxin A secretion in primary cultures of rabbit renal proximal tubule cells.

Journal of the American Society of Nephrology : JASN (1999-01-16)
C E Groves, G Nowak, M Morales
ABSTRACT

Primary cultures of rabbit renal proximal tubule cells grown under improved culture conditions were used to study the transepithelial transport of the nephrotoxic mycotoxin ochratoxin A. The basal-to-apical transepithelial flux, i.e., secretion, of this fluorescence organic acid was measured in primary cultures of rabbit renal proximal tubule cells. The basal-to-apical flux of ochratoxin A increased with time and reached a steady state after 12 h. On the other hand, the apical-to-basal flux, i.e., reabsorption, of ochratoxin A was minimal over time. The secretory flux of ochratoxin A was as much as eightfold greater than the reabsorptive flux, indicating that net secretion is the primary mechanism for ochratoxin A clearance by the proximal tubule. The kinetic analysis of ochratoxin A flux revealed secretion to be a saturable and very high-affinity process with an apparent K50 of 0.33 +/- 0.21 mM. A saturating concentration of the prototypical organic anion substrate para-aminohippurate (PAH) reduced ochratoxin A secretion by approximately 75%. The kinetic analysis of PAH inhibition of ochratoxin A secretion revealed an IC50 of 195 mM, which is similar to the IC50 for PAH inhibition of peritubular ochratoxin A uptake in tubule suspensions and the Km, values for peritubular PAH uptake. The organic anions probenecid, octanoate, and alpha-ketoglutarate reduced ochratoxin A excretion to the same degree as PAH, whereas the amino acid phenylalanine had a minimal effect on ochratoxin A secretion. Thus, collectively, these observations indicate that the secretion of ochratoxin A in primary cultures of rabbit renal proximal tubules is limited to the organic anion secretory pathway. The high affinity measured for the basal-to-apical flux of ochratoxin A suggests that at concentrations typical of naturally occurring exposures, transepithelial secretion by the organic anion transport pathway represents a significant avenue for excretion of this mycotoxin by the renal proximal tubule.