- Hybridization of pulsed-Q dissociation and collision-activated dissociation in linear ion trap mass spectrometer for iTRAQ quantitation.
Hybridization of pulsed-Q dissociation and collision-activated dissociation in linear ion trap mass spectrometer for iTRAQ quantitation.
Coupling of multiplex isobaric tags for relative and absolute quantitation (iTRAQ) to a sensitive linear ion trap (LTQ) mass spectrometer (MS) is a challenging, but highly promising approach for quantitative high-throughput proteomic profiling. Integration of the advantages of pulsed-Q dissociation (PQD) and collision-activated dissociation (CAD) fragmentation methods into a PQD-CAD hybrid mode, together with PQD optimization and data manipulation with a bioinformatics algorithm, resulted in a robust, sensitive and accurate iTRAQ quantitative proteomic workflow. The workflow was superior to the default PQD setting when profiling the proteome of a gastric cancer cell line, SNU5. Taken together, we established an optimized PQD-CAD hybrid workflow in LTQ-MS for iTRAQ quantitative proteomic profiling that may have wide applications in biological and biomedical research.