Skip to Content
Merck
CN
  • nNOS-CAPON interaction mediates amyloid-β-induced neurotoxicity, especially in the early stages.

nNOS-CAPON interaction mediates amyloid-β-induced neurotoxicity, especially in the early stages.

Aging cell (2018-03-27)
Yu Zhang, Zhu Zhu, Hai-Ying Liang, Lei Zhang, Qi-Gang Zhou, Huan-Yu Ni, Chun-Xia Luo, Dong-Ya Zhu
ABSTRACT

In neurons, increased protein-protein interactions between neuronal nitric oxide synthase (nNOS) and its carboxy-terminal PDZ ligand (CAPON) contribute to excitotoxicity and abnormal dendritic spine development, both of which are involved in the development of Alzheimer's disease. In models of Alzheimer's disease, increased nNOS-CAPON interaction was detected after treatment with amyloid-β in vitro, and a similar change was found in the hippocampus of APP/PS1 mice (a transgenic mouse model of Alzheimer's disease), compared with age-matched background mice in vivo. After blocking the nNOS-CAPON interaction, memory was rescued in 4-month-old APP/PS1 mice, and dendritic impairments were ameliorated both in vivo and in vitro. Furthermore, we demonstrated that S-nitrosylation of Dexras1 and inhibition of the ERK-CREB-BDNF pathway might be downstream of the nNOS-CAPON interaction.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Dexras1 Antibody, Chemicon®, from rabbit
Sigma-Aldrich
Anti-Post Synaptic Density Protein 95 Antibody, clone 6G6-1C9, clone 6G6-1C9, Chemicon®, from mouse