Skip to Content
Merck
CN
  • Structure of the Human cGAS-DNA Complex Reveals Enhanced Control of Immune Surveillance.

Structure of the Human cGAS-DNA Complex Reveals Enhanced Control of Immune Surveillance.

Cell (2018-07-17)
Wen Zhou, Aaron T Whiteley, Carina C de Oliveira Mann, Benjamin R Morehouse, Radosław P Nowak, Eric S Fischer, Nathanael S Gray, John J Mekalanos, Philip J Kranzusch
ABSTRACT

Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for immune responses to pathogen replication, cellular stress, and cancer. Existing structures of the mouse cGAS-DNA complex provide a model for enzyme activation but do not explain why human cGAS exhibits severely reduced levels of cyclic GMP-AMP (cGAMP) synthesis compared to other mammals. Here, we discover that enhanced DNA-length specificity restrains human cGAS activation. Using reconstitution of cGAMP signaling in bacteria, we mapped the determinant of human cGAS regulation to two amino acid substitutions in the DNA-binding surface. Human-specific substitutions are necessary and sufficient to direct preferential detection of long DNA. Crystal structures reveal why removal of human substitutions relaxes DNA-length specificity and explain how human-specific DNA interactions favor cGAS oligomerization. These results define how DNA-sensing in humans adapted for enhanced specificity and provide a model of the active human cGAS-DNA complex to enable structure-guided design of cGAS therapeutics.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Maltose Binding Protein Antibody, serum, Chemicon®