- OSU-6162, a Sigma1R Ligand in Low Doses, Can Further Increase the Effects of Cocaine Self-Administration on Accumbal D2R Heteroreceptor Complexes.
OSU-6162, a Sigma1R Ligand in Low Doses, Can Further Increase the Effects of Cocaine Self-Administration on Accumbal D2R Heteroreceptor Complexes.
Cocaine was previously shown to act at the Sigma1R which is a target for counteracting cocaine actions. It therefore becomes of interest to test if the monoamine stabilizer (-) OSU-6162 (OSU-6162) with a nanomolar affinity for the Sigma1R can acutely modulate in low doses the effects of cocaine self-administration. In behavioral studies, OSU-6162 (5 mg/kg, s.c.) did not significantly change the number of active lever pressing and cocaine infusions. However, a trend to reduce cocaine readouts was found after 3 days of treatment. In contrast, in maintenance of cocaine self-administration, the proximity ligation assay performed on brains from rats pretreated with OSU-6162 showed highly significant increases in the density of the D2R-Sigma1R heteroreceptor complexes in the shell of the nucleus accumbens versus OSU-6162 induced increases in this region of yoked saline rats. In cocaine self-administration, highly significant increases were also induced by OSU-6162 in the A2AR-D2R heteroreceptor complexes in the nucleus accumbens shell versus vehicle-treated rats. Furthermore, ex vivo, the A2AR agonist CGS21680 (100 nM) produced a marked and significant increase of the D2R Ki high values in the OSU-6162-treated versus vehicle-treated rats under maintenance of cocaine self-administration. These results indicate a substantial increase in the inhibitory allosteric A2AR-D2R interactions following cocaine self-administration upon activation by the A2AR agonist ex vivo. The current results indicate that OSU-6162 via its high affinity for the Sigma1R may increase the number of accumbal shell D2R-Sigma1R and A2AR-D2R heteroreceptor complexes associated with further increases in the antagonistic A2AR-D2R interactions in cocaine self-administration.