- Production of autoantibodies by murine B-1a cells stimulated with Helicobacter pylori urease through toll-like receptor 2 signaling.
Production of autoantibodies by murine B-1a cells stimulated with Helicobacter pylori urease through toll-like receptor 2 signaling.
Helicobacter pylori infection is associated with several autoimmune diseases, in which autoantibody-producing B cells must be activated. Among these B cells, CD5-positive B-1a cells from BALB/c mice were confirmed to secrete autoantibodies when cocultured with purified H. pylori urease in the absence of T cells. To determine the mechanisms for autoantibody production, CD5-positive B-1a cells were sorted from murine spleen cells and stimulated with either purified H. pylori urease or H. pylori coated onto plates (referred to hereafter as plate-coated H. pylori), and autoantibody production was measured by enzyme-linked immunosorbent assay (ELISA). Complete urease was not secreted from H. pylori but was visually expressed over the bacterium-like endotoxin. Urease-positive plated-coated H. pylori stimulated B-1a cells to produce autoantibodies, although urease-deficient isotype-matched H. pylori did not. Autoantibody secretion by B-1a cells was inhibited when bacteria were pretreated with anti-H. pylori urease-specific antibody having neutralizing ability against urease enzymatic activity but not with anti-H. pylori urease-specific antibody without neutralizing capacity. The B-1a cells externally express various Toll-like receptors (TLRs): TLR1, TLR2, TLR4, and TLR6. Among the TLRs, blocking of TLR2 on B-1a cells with a specific monoclonal antibody (MAb), T2.5, inhibited autoantibody secretion when B-1a cells were stimulated with plate-coated H. pylori or H. pylori urease. Moreover, B-1a cells from TLR2-knockout mice did not produce those autoantibodies. The present study provides evidence that functional urease expressed on the surface of H. pylori will directly stimulate B-1a cells via innate TLR2 to produce various autoantibodies and may induce autoimmune disorders.