Skip to Content
Merck
CN
  • Heat shock inhibition of CDK5 increases NOXA levels through miR-23a repression.

Heat shock inhibition of CDK5 increases NOXA levels through miR-23a repression.

The Journal of biological chemistry (2015-04-02)
Trevor M Morey, Rabih Roufayel, Donald S Johnston, Andrew S Fletcher, Dick D Mosser
ABSTRACT

Hyperthermia is a proteotoxic stress that is lethal when exposure is extreme but also cytoprotective in that sublethal exposure leads to the synthesis of heat shock proteins, including HSP70, which are able to inhibit stress-induced apoptosis. CDK5 is an atypical cyclin-dependent kinase family member that regulates many cellular functions including motility and survival. Here we show that exposure of a human lymphoid cell line to hyperthermia causes CDK5 insolubilization and loss of tyrosine-15 phosphorylation, both of which were prevented in cells overexpressing HSP70. Inhibition of CDK5 activity with roscovitine-sensitized cells to heat induced apoptosis indicating a protective role for CDK5 in inhibiting heat-induced apoptosis. Both roscovitine and heat shock treatment caused increased accumulation of NOXA a pro-apoptotic BH3-only member of the BCL2 family. The increased abundance of NOXA by CDK5 inhibition was not a result of changes in NOXA protein turnover. Instead, CDK5 inhibition increased NOXA mRNA and protein levels by decreasing the expression of miR-23a, whereas overexpressing the CDK5 activator p35 attenuated both of these effects on NOXA and miR-23a expression. Lastly, overexpression of miR-23a prevented apoptosis under conditions in which CDK5 activity was inhibited. These results demonstrate that CDK5 activity provides resistance to heat-induced apoptosis through the expression of miR-23a and subsequent suppression of NOXA synthesis. Additionally, they indicate that hyperthermia induces apoptosis through the insolubilization and inhibition of CDK5 activity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-α-Tubulin Antibody, clone DM1A, clone DM1A, from mouse