Skip to Content
Merck
CN
  • Macrophage-Derived Slit3 Controls Cell Migration and Axon Pathfinding in the Peripheral Nerve Bridge.

Macrophage-Derived Slit3 Controls Cell Migration and Axon Pathfinding in the Peripheral Nerve Bridge.

Cell reports (2019-02-07)
Xin-Peng Dun, Lauren Carr, Patricia K Woodley, Riordan W Barry, Louisa K Drake, Thomas Mindos, Sheridan L Roberts, Alison C Lloyd, David B Parkinson
ABSTRACT

Slit-Robo signaling has been characterized as a repulsive signal for precise axon pathfinding and cell migration during embryonic development. Here, we describe a role for Sox2 in the regulation of Robo1 in Schwann cells and for Slit3-Robo1 signaling in controlling axon guidance within the newly formed nerve bridge following peripheral nerve transection injury. In particular, we show that macrophages form the outermost layer of the nerve bridge and secrete high levels of Slit3, while migratory Schwann cells and fibroblasts inside the nerve bridge express the Robo1 receptor. In line with this pattern of Slit3 and Robo1 expression, we observed multiple axon regeneration and cell migration defects in the nerve bridge of Sox2-, Slit3-, and Robo1-mutant mice. Our findings have revealed important functions for macrophages in the peripheral nervous system, utilizing Slit3-Robo1 signaling to control correct peripheral nerve bridge formation and precise axon targeting to the distal nerve stump following injury.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Myelin Protein Zero antibody produced in goat, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
ANTI-SLIT1(N-TERMINAL) antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-Sox2 Antibody, Chemicon®, from rabbit
Sigma-Aldrich
Anti-SLIT3, (N-terminal) antibody produced in rabbit, affinity isolated antibody
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5, clone 6C5, Chemicon®, from mouse