Skip to Content
Merck
CN
  • The inflammasome NLRP3 plays a dual role on mouse corpora cavernosa relaxation.

The inflammasome NLRP3 plays a dual role on mouse corpora cavernosa relaxation.

Scientific reports (2019-11-09)
Rafael S Fais, Fernanda L Rodrigues, Camila A Pereira, Allan C Mendes, Fabíola Mestriner, Rita C Tostes, Fernando S Carneiro
ABSTRACT

NLRP3 plays a role in vascular diseases. Corpora cavernosa (CC) is an extension of the vasculature. We hypothesize that NLRP3 plays a deleterious role in CC relaxation. Male C57BL/6 (WT) and NLRP3 deficient (NLRP3-/-) mice were used. Intracavernosal pressure (ICP/MAP) measurement was performed. Functional responses were obtained from CC strips of WT and NLRP3-/- mice before and after MCC950 (NLRP3 inhibitor) or LPS + ATP (NLRP3 stimulation). NLRP3, caspase-1, IL-1β, eNOS, nNOS, guanylyl cyclase-β1 (GCβ1) and PKG1 protein expressions were determined. ICP/MAP and sodium nitroprusside (SNP)-induced relaxation in CC were decreased in NLRP3-/- mice. Caspase-1, IL-1β and eNOS activity were increased, but PKG1 was reduced in CC of NLRP3-/-. MCC950 decreased non-adrenergic non-cholinergic (NANC), acetylcholine (ACh), and SNP-induced relaxation in WT mice. MCC950 did not alter NLRP3, caspase-1 and IL-1β, but reduced GCβ1 expression. Although LPS + ATP decreased ACh- and SNP-, it increased NANC-induced relaxation in CC from WT, but not from NLRP3-/- mice. LPS + ATP increased NLRP3, caspase-1 and interleukin-1β (IL-1β). Conversely, it reduced eNOS activity and GCβ1 expression. NLRP3 plays a dual role in CC relaxation, with its inhibition leading to impairment of nitric oxide-mediated relaxation, while its activation by LPS + ATP causes decreased CC sensitivity to NO and endothelium-dependent relaxation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Guanylate Cyclase β antibody produced in rabbit, affinity isolated antibody
Sigma-Aldrich
Anti-GAPDH antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution