Skip to Content
Merck
CN
  • EPR spectroscopy of MolB2C2-a reveals mechanism of transport for a bacterial type II molybdate importer.

EPR spectroscopy of MolB2C2-a reveals mechanism of transport for a bacterial type II molybdate importer.

The Journal of biological chemistry (2013-05-28)
Austin J Rice, Frances J D Alvarez, Kathryn M Schultz, Candice S Klug, Amy L Davidson, Heather W Pinkett
ABSTRACT

In bacteria, ATP-binding cassette (ABC) transporters are vital for the uptake of nutrients and cofactors. Based on differences in structure and activity, ABC importers are divided into two types. Type I transporters have been well studied and employ a tightly regulated alternating access mechanism. Less is known about Type II importers, but much of what we do know has been observed in studies of the vitamin B12 importer BtuC2D2. MolB2C2 (formally known as HI1470/71) is also a Type II importer, but its substrate, molybdate, is ∼10-fold smaller than vitamin B12. To understand mechanistic differences among Type II importers, we focused our studies on MolBC, for which alternative conformations may be required to transport its relatively small substrate. To investigate the mechanism of MolBC, we employed disulfide cross-linking and EPR spectroscopy. From these studies, we found that nucleotide binding is coupled to a conformational shift at the periplasmic gate. Unlike the larger conformational changes in BtuCD-F, this shift in MolBC-A is akin to unlocking a swinging door: allowing just enough space for molybdate to slip into the cell. The lower cytoplasmic gate, identified in BtuCD-F as "gate I," remains open throughout the MolBC-A mechanism, and cytoplasmic gate II closes in the presence of nucleotide. Combining our results, we propose a peristaltic mechanism for MolBC-A, which gives new insight in the transport of small substrates by a Type II importer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-α-Phosphatidylcholine, from soybean, Type II-S, 14-29% choline basis