Skip to Content
Merck
CN
  • Absorption of foliar-applied Zn in sunflower (Helianthus annuus): importance of the cuticle, stomata and trichomes.

Absorption of foliar-applied Zn in sunflower (Helianthus annuus): importance of the cuticle, stomata and trichomes.

Annals of botany (2018-07-19)
Cui Li, Peng Wang, Antony van der Ent, Miaomiao Cheng, Haibo Jiang, Thea Lund Read, Enzo Lombi, Caixian Tang, Martin D de Jonge, Neal W Menzies, Peter M Kopittke
ABSTRACT

The pathways whereby foliar-applied nutrients move across the leaf surface remain unclear. The aim of the present study was to examine the pathways by which foliar-applied Zn moves across the sunflower (Helianthus annuus) leaf surface, considering the potential importance of the cuticle, stomata and trichomes. Using synchrotron-based X-ray florescence microscopy and nanoscale secondary ion mass spectrometry (NanoSIMS), the absorption of foliar-applied ZnSO4 and nano-ZnO were studied in sunflower. The speciation of Zn was also examined using synchrotron-based X-ray absorption spectroscopy. Non-glandular trichomes (NGTs) were particularly important for foliar Zn absorption, with Zn preferentially accumulating within trichomes in ≤15 min. The cuticle was also found to have a role, with Zn appearing to move across the cuticle before accumulating in the walls of the epidermal cells. After 6 h, the total Zn that accumulated in the NGTs was approx. 1.9 times higher than in the cuticular tissues. No marked accumulation of Zn was found within the stomatal cavity, probably indicating a limited contribution of the stomatal pathway. Once absorbed, the Zn accumulated in the walls of the epidermal and the vascular cells, and trichome bases of both leaf sides, with the bundle sheath extensions that connected to the trichomes seemingly facilitating this translocation. Finally, the absorption of nano-ZnO was substantially lower than for ZnSO4, with Zn probably moving across the leaf surface as soluble Zn rather than nanoparticles. In sunflower, both the trichomes and cuticle appear to be important for foliar Zn absorption.