Skip to Content
Merck
CN
  • Effects of a recombinant fibrolytic enzyme on fiber digestion, ruminal fermentation, nitrogen balance, and total tract digestibility of heifers fed a high forage diet1.

Effects of a recombinant fibrolytic enzyme on fiber digestion, ruminal fermentation, nitrogen balance, and total tract digestibility of heifers fed a high forage diet1.

Journal of animal science (2019-06-30)
Tao Ran, Atef M Saleem, Yizhao Shen, Gabriel O Ribeiro, Karen A Beauchemin, Adrian Tsang, Wenzhu Yang, Tim A McAllister
ABSTRACT

A metabolism study was conducted using 8 ruminal cannulated beef heifers to investigate the effects of a recombinant fibrolytic enzyme (RFE; xylanase XYL10C) selected specifically for forage-fed ruminants on ruminal pH, fermentation, nitrogen balance, and total tract digestibility of heifers. The experiment was a cross-over design with 2 treatments and 2 periods. The 2 treatments were a basal diet containing 60% barley silage, 30% barley straw, and 10% supplement (DM basis) without (control) or with RFE. The enzyme was sprayed onto the barley straw at a rate of 6.6 × 104 IU·kg-1 DM 24 h before feeding. Each period comprised 2 wk of diet adaptation and 1 wk of sampling and data collection. Feed intake and total tract digestibility of DM, OM, NDF, and ADF were unaffected by RFE. Ruminal pH including mean, minimum, maximum, and duration pH <5.8, did not differ between treatments. Total VFA concentration, molar proportion of individual VFA, and acetate-to-propionate ratio were also not affected by RFE. However, ruminal NH3-N concentration (P < 0.06) and endoglucanase activity (P < 0.08) in ruminal fluid tended to be higher with RFE. Nitrogen utilization and microbial protein synthesis were not affected by treatment. These results indicate that XYL10C did not improve fiber digestion in heifers fed a high forage diet, despite the fact that it was specifically selected for this trait in laboratory assays. However, the increased ruminal NH3-N concentration suggests it potentially increased ruminal proteolytic activity.