Skip to Content
Merck
CN
  • Study on Electrochemical Degradation of Nicosulfuron by IrO₂-Based DSA Electrodes: Performance, Kinetics, and Degradation Mechanism.

Study on Electrochemical Degradation of Nicosulfuron by IrO₂-Based DSA Electrodes: Performance, Kinetics, and Degradation Mechanism.

International journal of environmental research and public health (2019-01-30)
Rui Zhao, Xuan Zhang, Fanli Chen, Xiaobing Man, Wenqiang Jiang
ABSTRACT

The widely used sulfonylurea herbicides have caused negative effects on the environment and human beings. Electrochemical degradation has attracted much attention in the treatment of refractory organic compounds due to its advantage of producing no secondary pollution. Three kinds of IrO₂-based dimensionally stable anodes (DSAs) were used to degrade nicosulfuron by a batch electrochemical process. The results showed that a well-distributed crack network was formed on the Ti/Ta₂O₅-IrO₂ electrode and Ti/Ta₂O₅-SnO₂-IrO₂ electrode due to the different coefficients of thermal expansion between the Ti substrate and oxide coatings. The oxygen evolution potential (OEP) increased according to the order of Ti/RuO₂-IrO₂ < Ti/Ta₂O₅-SnO₂-IrO₂ < Ti/Ta₂O₅-IrO₂. Among the three electrodes, the Ti/Ta₂O₅-IrO₂ electrode showed the highest efficiency and was chosen as the experimental electrode. Single factor experiments were carried out to obtain the optimum electrolysis condition, shown as follows: currency intensity 0.8 A; electrode spacing 3 cm, electrolyte pH 3. Under the optimum conditions, the degradation of nicosulfuron followed first-order kinetics and was mainly due to indirect electrochemical oxidation. It was a typical diffusion-controlled electrochemical process. On the basis of the intermediate identified by high performance liquid chromatograph-mass spectrometry (HPLC-MS), two possible degradation routes were proposed.