Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

We are planning system maintenance between Friday, Apr 18 at 9:00 PM CDT and Saturday, Apr 19 at 9:00 AM CDT. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

For important updates on recent policy changes, please click here for more details.

Merck
CN
  • Optical Planar Waveguide Sensor with Integrated Digitally-Printed Light Coupling-in and Readout Elements.

Optical Planar Waveguide Sensor with Integrated Digitally-Printed Light Coupling-in and Readout Elements.

Sensors (Basel, Switzerland) (2019-06-30)
Jorge Alamán, María López-Valdeolivas, Raquel Alicante, Carlos Sánchez-Somolinos
ABSTRACT

Optical planar waveguide sensors, able to detect and process information from the environment in a fast, cost-effective, and remote fashion, are of great interest currently in different application areas including security, metrology, automotive, aerospace, consumer electronics, energy, environment, or health. Integration of networks of these systems together with other optical elements, such as light sources, readout, or detection systems, in a planar waveguide geometry is greatly demanded towards more compact, portable, and versatile sensing platforms. Herein, we report an optical temperature sensor with a planar waveguide architecture integrating inkjet-printed luminescent light coupling-in and readout elements with matched emission and excitation. The first luminescent element, when illuminated with light in its absorption band, emits light that is partially coupled into the propagation modes of the planar waveguide. Remote excitation of this element can be performed without the need for special alignment of the light source. A thermoresponsive liquid crystal-based film regulates the amount of light coupled out from the planar waveguide at the sensing location. The second luminescent element partly absorbs the waveguided light that reaches its location and emits at longer wavelengths, serving as a temperature readout element through luminescence intensity measurements. Overall, the ability of inkjet technology to digitally print luminescent elements demonstrates great potential for the integration and miniaturization of light coupling-in and readout elements in optical planar waveguide sensing platforms.