Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

For important updates on recent policy changes, please click here for more details.

Merck
CN
  • Cubic versus hexagonal - effect of host crystallinity on the T1 shortening behaviour of NaGdF4 nanoparticles.

Cubic versus hexagonal - effect of host crystallinity on the T1 shortening behaviour of NaGdF4 nanoparticles.

Nanoscale (2019-03-26)
Nan Liu, Riccardo Marin, Yacine Mazouzi, Greg O Cron, Adam Shuhendler, Eva Hemmer
ABSTRACT

Sodium gadolinium fluoride (NaGdF4) nanoparticles are promising candidates as T1 shortening magnetic resonance imaging (MRI) contrast agents due to the paramagnetic properties of the Gd3+ ion. Effects of size and surface modification of these nanoparticles on proton relaxation times have been widely studied. However, to date, there has been no report on how T1 relaxivity (r1) is affected by the different polymorphs in which NaGdF4 crystallizes: cubic (α) and hexagonal (β). Here, a microwave-assisted thermal decomposition method was developed that grants selective access to NaGdF4 nanoparticles of either phase in the same size range, allowing the influence of host crystallinity on r1 to be investigated. It was found that at 3 T cubic NaGdF4 nanoparticles exhibit larger r1 values than their hexagonal analogues. This result was interpreted based on Solomon-Bloembergen-Morgan theory, suggesting that the inner sphere contribution to r1 is more pronounced for cubic NaGdF4 nanoparticles as compared to their hexagonal counterparts. This holds true irrespective of the chosen surface modification, i.e. small citrate groups or longer chain poly(acrylic acid). Key aspects were found to be a polymorph-induced larger hydrodynamic diameter and the higher magnetization possessed by cubic nanoparticles.