Skip to Content
Merck
CN
  • Assessment of the effect of methyl-triclosan and its mixture with triclosan on developing zebrafish (Danio rerio) embryos using mass spectrometry-based metabolomics.

Assessment of the effect of methyl-triclosan and its mixture with triclosan on developing zebrafish (Danio rerio) embryos using mass spectrometry-based metabolomics.

Journal of hazardous materials (2019-01-25)
Jing Fu, Zhiyuan Gong, Sungwoo Bae
ABSTRACT

Methyl-triclosan (MTCS), as a biodegradation product from antibacterial triclosan (TCS), has been detected in water catchments, and it has also been verified to accumulate in biota due to its hydrophobicity. There is a lack, however, of toxicity studies on MTCS and its effects on organisms in conjunction with TCS. In this study, exposure experiments were conducted to assess the toxicity to embryonic zebrafish of selected concentrations of MTCS (from 1 ng/L to 400 μg/L) and MTCS/TCS mixtures (from 1 μg/L TCS and 100 ng/L MTCS to 300 μg/L TCS and 30 μg/L MTCS). Specimens were extracted using acetonitrile: isopropanol: water (3:3:2; v/v/v) and then analyzed using Gas chromatography-mass spectrometry (GC-MS) to identify the metabolites based on the Fiehn library database. The results showed that MTCS exposure led to the alterations of the metabolomes of the zebrafish embryos, including level changes of l-valine, d-mannose, d-glucose, and other metabolites. Multivariate analysis (PCA, PLS-DA, sPLS-DA) and univariate analysis (one-way ANOVA) indicated differences between the control and exposure groups of the metabolites, indicating that biological pathways, such as amino acid synthesis, pentose phosphate pathway (PPP), starch and sucrose metabolism were influenced. Moreover, when the embryos were exposed to a mix of TCS and MTCS, TCS dominated the mixture's effect on biological pathways because the concentration ratio within the mixture, which mimics environmental ratio of 10 TCS : 1 MTCS, leads to high bioavailability of TCS.