Skip to Content
Merck
CN
  • Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling.

Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling.

The Journal of clinical investigation (2018-04-25)
Amber Emmerson, Silvia Cellone Trevelin, Heloise Mongue-Din, Pablo D Becker, Carla Ortiz, Lesley A Smyth, Qi Peng, Raul Elgueta, Greta Sawyer, Aleksandar Ivetic, Robert I Lechler, Giovanna Lombardi, Ajay M Shah
ABSTRACT

The superoxide-generating enzyme Nox2 contributes to hypertension and cardiovascular remodeling triggered by activation of the renin-angiotensin system. Multiple Nox2-expressing cells are implicated in angiotensin II-induced (Ang II-induced) pathophysiology, but the importance of Nox2 in leukocyte subsets is poorly understood. Here, we investigated the role of Nox2 in T cells, particularly Tregs. Mice globally deficient in Nox2 displayed increased numbers of Tregs in the heart at baseline, whereas Ang II-induced effector T cell (Teff) infiltration was inhibited. To investigate the role of Treg Nox2, we generated a mouse line with CD4-targeted Nox2 deficiency (Nox2fl/flCD4Cre+). These animals showed inhibition of Ang II-induced hypertension and cardiac remodeling related to increased tissue-resident Tregs and reduction in infiltrating Teffs, including Th17 cells. The protection in Nox2fl/flCD4Cre+ mice was reversed by anti-CD25 antibody depletion of Tregs. Mechanistically, Nox2-/y Tregs showed higher in vitro suppression of Teff proliferation than WT Tregs, increased nuclear levels of FoxP3 and NF-κB, and enhanced transcription of CD25, CD39, and CD73. Adoptive transfer of Tregs confirmed that Nox2-deficient cells had greater inhibitory effects on Ang II-induced heart remodeling than WT cells. These results identify a previously unrecognized role of Nox2 in modulating suppression of Tregs, which acts to enhance hypertension and cardiac remodeling.