Skip to Content
Merck
CN
  • Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis.

Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis.

Cell stem cell (2019-04-16)
Qinjie Weng, Jincheng Wang, Jiajia Wang, Danyang He, Zuolin Cheng, Feng Zhang, Ravinder Verma, Lingli Xu, Xinran Dong, Yunfei Liao, Xuelian He, Andrew Potter, Liguo Zhang, Chuntao Zhao, Mei Xin, Qian Zhou, Bruce J Aronow, Perry J Blackshear, Jeremy N Rich, Qiaojun He, Wenhao Zhou, Mario L Suvà, Ronald R Waclaw, S Steven Potter, Guoqiang Yu, Q Richard Lu
ABSTRACT

The identity and degree of heterogeneity of glial progenitors and their contributions to brain tumor malignancy remain elusive. By applying lineage-targeted single-cell transcriptomics, we uncover an unanticipated diversity of glial progenitor pools with unique molecular identities in developing brain. Our analysis identifies distinct transitional intermediate states and their divergent developmental trajectories in astroglial and oligodendroglial lineages. Moreover, intersectional analysis uncovers analogous intermediate progenitors during brain tumorigenesis, wherein oligodendrocyte-progenitor intermediates are abundant, hyper-proliferative, and progressively reprogrammed toward a stem-like state susceptible to further malignant transformation. Similar actively cycling intermediate progenitors are prominent components in human gliomas with distinct driver mutations. We further unveil lineage-driving networks underlying glial fate specification and identify Zfp36l1 as necessary for oligodendrocyte-astrocyte lineage transition and glioma growth. Together, our results resolve the dynamic repertoire of common and divergent glial progenitors during development and tumorigenesis and highlight Zfp36l1 as a molecular nexus for balancing glial cell-fate decision and controlling gliomagenesis.