Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

We are planning system maintenance between Friday, Apr 18 at 9:00 PM CDT and Saturday, Apr 19 at 9:00 AM CDT. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

For important updates on recent policy changes, please click here for more details.

Merck
CN
  • Enhanced cytotoxic and genotoxic effects of gadolinium-doped ZnO nanoparticles on irradiated lung cancer cells at megavoltage radiation energies.

Enhanced cytotoxic and genotoxic effects of gadolinium-doped ZnO nanoparticles on irradiated lung cancer cells at megavoltage radiation energies.

Materials science & engineering. C, Materials for biological applications (2019-07-28)
Masoumeh Zangeneh, Hassan Ali Nedaei, Hossein Mozdarani, Aziz Mahmoudzadeh, Mahdieh Salimi
ABSTRACT

The purpose of this study was to investigate the radiation dose enhancement effects of gadolinium-doped zinc oxide nanoparticles (Gd-doped ZnO NPs) under the megavoltage (MV) X-ray irradiation. ZnO NPs have preferred photocatalytic properties under UV light for cancer killing. UV light has limited applications in cancer treatment and it is necessary to use X-ray photons with MV energies. In order to increase the absorption of radiation and also to enhance the imaging visualization capabilities of ZnO NPs, gadolinium (Gd) as a high atomic number element was selected for doping into the structure of ZnO NPs. Gd-doped ZnO NPs were synthesized by a chemical precipitation method and characterized by transmission electron microscopy, powder X-ray diffraction, ultraviolet-visible spectroscopy, and energy-dispersive X-ray techniques. Cellular uptake was assessed by TEM and inductively coupled plasma mass spectrometry. NPs cytotoxicity was analyzed by MTT assay and radiation dose enhancement was measured by clonogenic survival assay. Apoptosis induction, cell cycle progression, micronucleus formation and expression of DNA double-strand break repair genes of XRCC2 and XRCC4 were determined by flow cytometry, micronucleus assay, and quantitative real-time polymerase chain reaction. CT and MR imaging were used to analyze the image visualization capabilities of NPs. NPs characterization showed that highly pure crystalline Gd-doped ZnO NPs with a narrow size distribution and grain size of 9 nm were synthesized. Gd-doped ZnO NPs were distributed in the cells and showed dose-dependent toxicity. Combination of Gd-doped ZnO NPs with 6 MV X-rays induced dose-dependent radiosensitivity with sensitizer enhancement ratios (SER) of 1.47 and 1.61 for 10 and 20 μg/mL NPs concentrations. Cancer cells blocked in G1, apoptosis rates, and micronuclei formation was enhanced and inversely, the DNA repair efficiency was impaired by down regulation of the mRNA levels of XRCC2 and XRCC4 genes. Gd-doped ZnO NPs enhanced the contrasts of CT and MR images of cancer cells. Overall, the results of this study provide detailed biological insights on the dose enhancement of Gd-doped ZnO NPs at MV radiations, which would contribute to the further development of this potent theranostic platform for clinical applications.