Skip to Content
Merck
CN
  • microRNA-203 promotes proliferation, differentiation, and migration of osteoblasts by upregulation of Msh homeobox 2.

microRNA-203 promotes proliferation, differentiation, and migration of osteoblasts by upregulation of Msh homeobox 2.

Journal of cellular physiology (2019-03-12)
Haochuan Liu, Bing Chen, Yi Li
ABSTRACT

Despite the improvements in fracture healing, about 10% of patients undergo abnormal healing. As a tumor suppressor, upregulation of microRNA (miR)-203 has been observed in osteogenic differentiation. Herein, we aimed to explore the functional role of miR-203 in osteoblasts as well as the underlying mechanisms. The expression of miR-203 in MC3T3-E1 cells that underwent osteogenic differentiation was determined by quantitative reverse transcription PCR (qRT-PCR). The effects of aberrantly expressed miR-203 on cell viability, migration, and expressions of proteins associated with proliferation, migration, and osteogenic differentiation were measured by using a Cell Counting Kit-8 assay, Transwell cell migration assay, and western blot/qRT-PCR, respectively. The possible downstream factor of miR-203 was subsequently studied. Finally, involvements of the mitogen-activated protein kinase (MAPK)/activator of transcription (STAT) pathways were assessed by western blot. We found that the miR-203 level was increased in osteogenic differentiation of MC3T3-E1 cells with increasing duration time (28th day, p < 0.001). After cell transfection, we interestingly found that miR-203 overexpression could increase cell viability (p < 0.05), promote proliferation, migration (p < 0.05), and osteogenic differentiation, and upregulate Msh homeobox 2 (Msx2) expression. Furthermore, Msx2 knockdown was proved to abrogate the effects of miR-203 overexpression on MC3T3-E1 cells. Finally, phosphorylated levels of key kinases in the MAPK/STAT pathways were increased by miR-203 overexpression via upregulating Msx2 expression. In conclusion, miR-203 overexpression promoted proliferation, migration, and osteogenic differentiation of MC3T3-E1 cells through upregulating Msx2 along with activation of the MAPK/STAT pathways.