Skip to Content

尊敬的客户:

目前国际形势复杂多变,关税政策尚不明朗,这可能对我们的产品价格产生一定影响。在此情况下,我们希望就订单事宜与您进行友好沟通。

基于当前的不确定性,如果您选择在此期间下单,我们将保留根据实际情况调整价格的权利。同时,我们也理解市场变化可能给您带来的困扰,因此如果在订单实际发货前因关税政策变动导致价格出现较大波动,默克将与您进行协商讨论并视情况对订单进行调整或取消。

We are planning system maintenance between Friday, Apr 18 at 9:00 PM CDT and Saturday, Apr 19 at 9:00 AM CDT. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

关于应对近期政策变化的重要更新,请点击此处查看详情。

Merck
CN
  • Improving linking interface between collagen-based hydrogels and bone-like substrates.

Improving linking interface between collagen-based hydrogels and bone-like substrates.

Colloids and surfaces. B, Biointerfaces (2019-08-07)
Anna Mas-Vinyals, Joan Gilabert-Porres, Laura Figueras-Esteve, Salvador Borrós
ABSTRACT

Regenerative medicine requires the use of heterogeneous scaffolds when the tissue that needs to be repaired presents a gradient in its properties and cannot be replaced by a homogeneous graft. Then, an intimate contact between the different layers is critical to guarantee the optimal performance of the construct. This work presents a procedure that allows the immobilization of collagen-based hydrogels by self-assembly onto any desired substrate, by means of a pentafluorophenyl methacrylate (PFM) coating obtained by plasma enhanced chemical vapor deposition and a collagen monolayer. The latter is attached onto the PFM-coated substrate thanks to its high reactivity towards amines and it will act as anchoring point for the subsequent collagen fibrillation and hydrogel formation. The interaction between collagen and PFM-coated substrates has been evaluated using the quartz crystal microbalance with dissipation (QCM-D) technique. In addition, QCM-D has been used to design and monitor the collagen fibril formation process. A correlation between QCM-D data and optical microscopy has been established, and fibril formation has been confirmed by atomic force microscopy (AFM).