Skip to Content

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

Merck
CN
  • 3D-Printed PCL/rGO Conductive Scaffolds for Peripheral Nerve Injury Repair.

3D-Printed PCL/rGO Conductive Scaffolds for Peripheral Nerve Injury Repair.

Artificial organs (2018-09-20)
Sanjairaj Vijayavenkataraman, Siti Thaharah, Shuo Zhang, Wen Feng Lu, Jerry Ying Hsi Fuh
ABSTRACT

The incidence of peripheral nerve injuries is on the rise and the current gold standard for treatment of such injuries is nerve autografting. Given the severe limitations of nerve autografts which include donor site morbidity and limited supply, neural guide conduits (NGCs) are considered as an effective alternative treatment. Conductivity is a desired property of an ideal NGC. Reduced graphene oxide (rGO) possesses several advantages in addition to its conductive nature such as high surface area to volume ratio due to its nanostructure and has been explored for its use in tissue engineering. However, most of the works reported are on traditional 2D culture with a layer of rGO coating, while the native tissue microenvironment is three-dimensional. In this study, PCL/rGO scaffolds are fabricated using electrohydrodynamic jet (EHD-jet) 3D printing method as a proof of concept study. Mechanical and material characterization of the printed PCL/rGO scaffolds and PCL scaffolds was done. The addition of rGO results in softer scaffolds which is favorable for neural differentiation. In vitro neural differentiation studies using PC12 cells were also performed. Cell proliferation was higher in the PCL/rGO scaffolds than the PCL scaffolds. Reverse transcription polymerase chain reaction and immunocytochemistry results reveal that PCL/rGO scaffolds support neural differentiation of PC12 cells.