Skip to Content
Merck
CN

Inhibition of telomerase by G-quartet DNA structures.

Nature (1991-04-25)
A M Zahler, J R Williamson, T R Cech, D M Prescott
ABSTRACT

The ends or telomeres of the linear chromosomes of eukaryotes are composed of tandem repeats of short DNA sequences, one strand being rich in guanine (G strand) and the complementary strand in cytosine. Telomere synthesis involves the addition of telomeric repeats to the G strand by telomere terminal transferase (telomerase). Telomeric G-strand DNAs from a variety of organisms adopt compact structures, the most stable of which is explained by the formation of G-quartets. Here we investigate the capacity of the different folded forms of telomeric DNA to serve as primers for the Oxytricha nova telomerase in vitro. Formation of the K(+)-stabilized G-quartet structure in a primer inhibits its use by telomerase. Furthermore, the octanucleotide T4G4, which does not fold, is a better primer than (T4G4)2, which can form a foldback structure. We conclude that telomerase does not require any folding of its DNA primer. Folding of telomeric DNA into G-quartet structures seems to influence the extent of telomere elongation in vitro and might therefore act as a negative regulator of elongation in vivo.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
TRAPezeTelomerase Positive Control Cell Pellet, This product is intended for use with the components of the TRAPEZE Telomerase Detection Kit, the TRAPEZE XL Telomerase Detection Kit & the TRAPEZE ELISA Telomerase Detection Kit.