Skip to Content
Merck
CN
  • Simultaneous detection of guanine, adenine, thymine and cytosine at choline monolayer supported multiwalled carbon nanotubes film.

Simultaneous detection of guanine, adenine, thymine and cytosine at choline monolayer supported multiwalled carbon nanotubes film.

Biosensors & bioelectronics (2011-02-08)
Po Wang, Hai Wu, Zong Dai, Xiaoyong Zou
ABSTRACT

A rapid, convenient and accurate method for the simultaneous detection of guanine (G), adenine (A), thymine (T) and cytosine (C) was developed at a multiwalled carbon nanotube (MWCNT)/choline (Ch) monolayer-modified glassy carbon electrode (GCE). X-ray photoelectron spectroscopy data demonstrated that Ch was covalently immobilised on the surface of GCE through oxygen atom. The Ch monolayer provides a positively charged surface with -N(+)(CH(3))(3) polar groups, so that it can attract negatively charged MWCNTs to the surface. Consequently, the MWCNT/Ch film exhibited remarkable electrocatalytic activities towards the oxidation of G, A, T and C due to the advantages of high electrode activity, large surface area, prominent antifouling property, and high electron transfer kinetics. All purine and pyrimidine bases showed well-defined catalytic oxidation peaks at MWCNT/Ch/GCE. The peak separations between G and A, A and T, and T and C are 270, 200, and 190 mV, respectively, which are sufficiently large for their potential recognition and simultaneous detection in mixture. Under the optimum conditions, the designed MWCNT/Ch/GCE exhibited low detection limit, high sensitivity and wide linear range for simultaneous detection of G, A, T and C. Moreover, the proposed method was successfully applied to the assessment of G, A, T and C contents in a herring sperm DNA sample with satisfactory results.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Deoxyribonucleic acid from herring sperm, not suitable for substrate for typical DNase assays (“crude oligonucleotides", <50 bp), degraded