Skip to Content
Merck
CN
  • Biomechanical properties and innervation of the female caveolin-1-deficient detrusor.

Biomechanical properties and innervation of the female caveolin-1-deficient detrusor.

British journal of pharmacology (2010-11-26)
Mardjaneh Karbalaei Sadegh, Mari Ekman, Catarina Rippe, Frank Sundler, Nils Wierup, Michiko Mori, Bengt Uvelius, Karl Swärd
ABSTRACT

Caveolin-1-deficiency is associated with substantial urogenital alterations. Here, a mechanical, histological and biochemical characterization of female detrusors from wild-type and caveolin-1-deficient (KO) mice was made to increase the understanding of detrusor changes caused by lack of caveolae. Length-tension relationships were generated, and we recorded responses to electrical field stimulation, the muscarinic receptor agonist carbachol and the purinoceptor agonist ATP. Tyrosine nitration and the contents of caveolin-1, cavin-1, muscarinic M₃ receptors, phospholipase C(β1), muscle-specific kinase (MuSK) and L-type Ca(2+) channels were determined by immunoblotting. Innervation was assessed by immunohistochemistry. Bladder to body weight ratio was not changed, nor was there any change in the optimum circumference for force development. Depolarization- and ATP-induced stress was reduced, as was carbachol-induced stress between 0.1 and 3 µM, but the supramaximal relative (% K(+)) response to carbachol was increased, as was M₃ expression. The scopolamine-sensitive component of the electrical field stimulation response was impaired, and yet bladder nerves contained little caveolin-1. The density of cholinergic nerves was unchanged, whereas CART- and CGRP-positive nerves were reduced. Immunoblotting revealed loss of MuSK. Ablation of caveolae in the female detrusor leads to generalized impairment of contractility, ruling out prostate hypertrophy as a contributing factor. Cholinergic neuroeffector transmission is impaired without conspicuous changes in the density of cholinergic nerves or morphology of their terminals, but correlating with reduced expression of MuSK.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Nitrotyrosine Antibody, Chemicon®, from rabbit