Skip to Content
Merck
CN
  • Comprehensive approach to structural and functional glycomics based on chemoselective glycoblotting and sequential tag conversion.

Comprehensive approach to structural and functional glycomics based on chemoselective glycoblotting and sequential tag conversion.

Analytical chemistry (2008-01-22)
Jun-ichi Furukawa, Yasuro Shinohara, Hiromitsu Kuramoto, Yoshiaki Miura, Hideyuki Shimaoka, Masaki Kurogochi, Mika Nakano, Shin-Ichiro Nishimura
ABSTRACT

Changes in protein glycosylation profoundly affect protein function. To understand these effects of altered protein glycosylation, we urgently need high-throughput technologies to analyze glycan expression and glycan-protein interactions. Methods are not available for amplification of glycans; therefore, highly efficient sample preparation is a major issue. Here we present a novel strategy that allows flexible and sequential incorporation of various functional tags into oligosaccharides derived from biological samples in a practical manner. When combined with a chemoselective glycoblotting platform, our analysis enables us to complete sample preparation (from serum to released, purified, methyl-esterified, and labeled glycans) in 8 h from multiple serum samples (up to 96 samples) using a 96-well microplate format and a standard de-N-glycosylation protocol that requires reductive alkylation and tryptic digestion prior to PNGase F digestion to ensure maximal de-N-glycosylation efficiency. Using this technique, we quantitatively detected more than 120 glycans on human carcinoembryonic antigens for the first time. This approach was further developed to include a streamlined method of purification, chromatographic fractionation, and immobilization onto a solid support for interaction analysis. Since our approach enables rapid, flexible, and highly efficient tag conversion, it will contribute greatly to a variety of glycomic studies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methacrylamide poly(ethylene glycol) amine hydrochloride, average Mn 400