Skip to Content
Merck
CN
  • cAMP/Protein Kinase A Signaling Inhibits Dlx5 Expression via Activation of CREB and Subsequent C/EBPβ Induction in 3T3-L1 Preadipocytes.

cAMP/Protein Kinase A Signaling Inhibits Dlx5 Expression via Activation of CREB and Subsequent C/EBPβ Induction in 3T3-L1 Preadipocytes.

International journal of molecular sciences (2018-10-17)
Hye-Lim Lee, Abdul S Qadir, Hyun-Jung Park, Eunkyung Chung, Yun-Sil Lee, Kyung Mi Woo, Hyun-Mo Ryoo, Hyun Jeong Kim, Jeong-Hwa Baek
ABSTRACT

Distal-less homeobox 5 (Dlx5) is a negative regulator of adipogenesis. Dlx5 expression is decreased by adipogenic stimuli, but the mechanisms of Dlx5 downregulation by adipogenic stimuli have not yet been determined. Here, we tested the impact of cAMP/PKA (protein kinase A) signaling induced by 3-isobutyl-1 methyl xanthine (IBMX), forskolin, and 8-CPT-cAMP on the expression of Dlx5 in 3T3-L1 preadipocytes. Significant downregulation of Dlx5 mRNA expression and protein production levels were observed via cAMP/PKA-dependent signaling. Forced expression of cAMP-responsive element-binding protein (CREB) and CCAAT/enhancer-binding protein β (C/EBPβ) was sufficient for downregulation of Dlx5 expression and revealed that CREB functions upstream of C/EBPβ. In addition, C/EBPβ knockdown by siRNA rescued Dlx5 expression in IBMX-treated 3T3-L1 preadipocytes. Luciferase assays using a Dlx5-luc-2935 reporter construct demonstrated the requirement of the Dlx5 promoter region, ranging from -774 to -95 bp that contains two putative C/EBPβ binding elements (site-1: -517 to -510 bp and site-2: -164 to -157 bp), in the suppression of Dlx5 transcription. Consequently, chromatin immunoprecipitation analysis confirmed the importance of site-1, but not site-2, in C/EBPβ binding and transcriptional suppression of Dlx5. In conclusion, we elucidated the underling mechanism of Dlx5 downregulation in IBMX-induced adipogenesis. IBMX activated cAMP/PKA/CREB signaling and subsequently upregulated C/EBPβ, which binds to the Dlx5 promoter to suppress Dlx5 transcription.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human FIGN
Sigma-Aldrich
MISSION® esiRNA, targeting human CEBPG