Skip to Content
Merck
CN
All Photos(1)

Documents

Safety Information

A7095

Sigma-Aldrich

Amyloglucosidase from Aspergillus niger

≥260 U/mL, aqueous solution

Sign Into View Organizational & Contract Pricing

Synonym(s):
AMG 300L, 1,4-α-D-Glucan glucohydrolase, Exo-1,4-α-glucosidase, Glucoamylase
CAS Number:
Enzyme Commission number:
MDL number:
UNSPSC Code:
12352204
NACRES:
NA.54

biological source

Aspergillus niger

Quality Level

form

aqueous solution

specific activity

≥260 U/mL

density

~1.2 g/mL at 25 °C

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

General description

Stabilized with glucose.
Amyloglucosidase is a disaccharidase−type alpha-glucosidase, produced by several species of Aspergillus genus. Immobilization of amyloglucosidase is known to increased its stability.

Application

Amyloglucosidase from Aspergillus niger has been used in in vitro digestions. It has also been used in the isolation of insoluble and soluble dietary fibre from quinoa and amaranth.

Biochem/physiol Actions

Amyloglucosidase from Aspergillus niger is capable of hydrolyzing the α-D-(1-4), the α-D-(1-6), and the α-D-(1-3) glucosidic bonds of oligosaccharides. Amyloglucosidase is an extracellular enzyme that converts starch to dextrins and glucose. The enzyme is used in the starch-processing industry for the commercial production of D-glucose from corn syrups.

Legal Information

A product of Novozymes Corp.
AMG is a trademark of Novozymes Corp.

Pictograms

Health hazard

Signal Word

Danger

Hazard Statements

Precautionary Statements

Hazard Classifications

Resp. Sens. 1

WGK

WGK 3

Regulatory Information

常规特殊物品

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Effect of two barley beta-glucan concentrates on in vitro glycaemic impact and cooking quality of spaghetti
Chillo, S and Ranawana, DV and Henry, CJK
Food Sci. Technol., 44(4), 940-948 (2011)
Recent Advances in Basic and Applied Aspects of Industrial Catalysis, 891-891 (1998)
Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans
Lamothe Lisa M, et al.
Food Chemistry, 167(4), 490-496 (2015)
Fandila Carlos-Amaya et al.
Journal of agricultural and food chemistry, 59(4), 1376-1382 (2011-01-11)
Banana starch was chemically modified using single (esterification or cross-linking) and dual modification (esterification-cross-linking and cross-linking-esterification), with the objective to increase the slowly digestible starch (SDS) and resistant starch (RS) concentrations. Physicochemical properties and in vitro digestibility were analyzed. The
Changjiang Yu et al.
Biotechnology for biofuels, 10, 167-167 (2017-07-04)
Duckweed is considered a promising source of energy due to its high starch content and rapid growth rate. Starch accumulation in duckweed involves complex processes that depend on the balanced expression of genes controlled by various environmental and endogenous factors.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service