Skip to Content
Merck
CN
HomeApplicationsGenomicsNext-Generation Sequencing

Next-Generation Sequencing

Massively parallel sequencing

Next-generation sequencing (NGS) is a term that broadly captures several related technologies that enable massively parallel or deep sequencing coverage for a selected region or the entire genome of an organism. Essential within the discipline of genomics-based research, sequencing technologies have existed for decades. However, the continual advancement of NGS or massively parallel DNA and RNA sequencing technologies have provided researchers with increases in genome-wide sequencing coverage and data analysis tools while rapidly decreasing in cost. Applications for NGS extend beyond whole genome analysis as it has significant implications for recent advancements in fundamental genomics and disease research alike.



Featured Categories

Close up of ultraviolet light box during the preparation of an agarose electrophoresis gel used in DNA separation
Agarose: Properties and Research Applications

Agarose bioreagents cater to cell culture and molecular biology applications, offering ready-to-pour agarose gels for RNA/DNA electrophoresis.

Shop Products
The image presents an anatomical illustration of the human digestive system, with a focus on the intestines highlighted in red.
Microbiome

Comprehensive Gut Microbiome Analysis: Uncover a holistic solution encompassing sample prep, sequencing, bioinformatics, and statistics. From 16S to WGS.

Shop Products

NGS Methods Overview

While the methodology and reagents for NGS are continuously evolving, there are now numerous NGS systems that are available to researchers. Commonly used platforms incorporate the use of several critical steps in the NGS workflow, including sample or library preparation, cluster generation, sequencing, and data analysis. Sample preparation typically involves either DNA amplification or the addition of sequence linkers or adaptors. Cluster generation of each DNA sequence is when DNA containing the covalently attached linker hybridizes to a solid surface for bridge PCR amplification, or by alternate methods such as emulsion PCR. Additionally, there are many DNA sequencing methods, including sequencing by ligation, sequencing by synthesis, pyrosequencing, and ion semiconductor sequencing. Each sequencing method involves varying reaction steps and chemistries that ultimately determine the length of each sequence (read length), error rate, and reagent cost.

Analytical Approaches for NGS Data Analyses

A final element for all NGS workflows is the critical data analysis step that occurs after sequencing. While each NGS platform and workflow produce an enormous amount of digital information captured on computers, the raw data set must be analyzed by bioinformaticians using a continuously increasing number of analytical tools for read alignment and mapping, such as Bowtie, Galaxy, and many others. Many of the developments in the field of NGS technologies has come from the merger of numerous scientific fields to develop and optimize the analysis and interpretation of such large data sets. Depending on the specific application needs, researchers are now able to use these powerful tools to sequence entire genomes, exomes, or transcriptomes for fundamental and disease research studies.

Document Search
Looking for More Specific Information?

Visit our document search for data sheets, certificates and technical documentation.

Find Documents

    Sign In To Continue

    To continue reading please sign in or create an account.

    Don't Have An Account?