

Product Information

SIGMA QUALITY CONTROL TEST PROCEDURE

Enzymatic Assay of TYROSINASE (EC 1.14.18.1)

PRINCIPLE:

Abbreviation used:

L-DOPA = L-3,4-Dihydroxyphenylalanine

CONDITIONS: T = 25°C, pH = 6.5, A_{280nm}, Light path = 1 cm

METHOD: Continuous Spectrophotometric Rate Determination

REAGENTS:

- A. 50 mM Potassium Phosphate Buffer, pH 6.5 at 25°C
(Prepare 50 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, Sigma Prod. No. P-5379. Adjust to pH 6.5 at 25°C with 1 M KOH.)
- B. 1 mM L-Tyrosine Solution
(Prepare 100 ml in deionized water using L-Tyrosine, Free Base, Sigma Prod. No. T-3754.)
- C. Tyrosinase Enzyme Solution
(Immediately before use, prepare a solution containing 500 - 1,000 units/ml of Tyrosinase in cold Reagent A.)

PROCEDURE:

Prepare a reaction cocktail by pipetting (in milliliters) the following reagents into a suitable container:

Deionized Water	9.00
Reagent A (Buffer)	10.00
Reagent B (Tyrosine)	10.00

Enzymatic Assay of TYROSINASE (EC 1.14.18.1)

PROCEDURE: (continued)

Mix and adjust to pH 6.5 at 25°C with 1 M HCl or 1 M NaOH, if necessary. Immediately before use, oxygenate by bubbling 99.9% pure O₂ through the reaction cocktail for 3 to 5 minutes. Pipette (in milliliters) into suitable quartz cuvettes:¹

	<u>Test</u>	<u>Blank</u>
Reaction Cocktail	2.90	2.90

Equilibrate to 25°C. Monitor the A_{280nm} until constant, using a suitably thermostatted spectrophotometer. Then add:

Reagent A (Buffer)	-----	0.10
Reagent C (Enzyme Solution)	0.10	-----

Immediately mix by inversion and record the increase in A_{280nm} for approximately 10 minutes. Obtain the ΔA_{280nm}/minute using the maximum linear rate for both the Test and Blank.

CALCULATIONS:

$$\text{Units/ml enzyme} = \frac{(\Delta A_{280\text{nm}}/\text{min Test} - \Delta A_{280\text{nm}}/\text{min Blank}) (\text{df})}{(0.001) (0.1)}$$

df = Dilution factor

0.001 = The change in A_{280nm}/minute per unit of Tyrosinase at pH 6.5 at 25°C in a 3 ml reaction mix
0.1 = Volume (in milliliters) of enzyme used

$$\text{Units/mg solid} = \frac{\text{units/ml enzyme}}{\text{mg solid/ml enzyme}}$$

$$\text{Units/mg protein} = \frac{\text{units/ml enzyme}}{\text{mg protein/ml enzyme}}$$

UNIT DEFINITION:

One unit will cause an increase in A_{280nm} of 0.001 per minute at pH 6.5 at 25°C in a 3 ml reaction mix containing L-tyrosine.

**Enzymatic Assay of TYROSINASE
(EC 1.14.18.1)**

FINAL ASSAY CONCENTRATION:

In a 3.00 ml reaction mix, the final concentrations are 18 mM potassium phosphate, 0.3 mM L-tyrosine and 50 - 100 units tyrosinase.

REFERENCE:

Duckworth, H. W. and Coleman, J. E. (1970) *J. Biol. Chem.* **245**, 1613-1625

NOTES:

1. Final volume of all cuvettes must equal 3 ml as stated in the Unit Definition.
2. This assay is based on the cited reference.
3. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

Sigma warrants that the above procedure information is currently utilized at Sigma and that Sigma products conform to the information in Sigma publications. Purchaser must determine the suitability of the information and products for its particular use. Upon purchase of Sigma products, see reverse side of invoice or packing slip for additional terms and conditions of sale.