

Protein Phosphatase 2A

Purified from human erythrocytes

Product Number **P 9989**

Storage Temperature –20 °C

EC: 3.1.3.16

Product Description

Protein phosphatase 2A (PP2A) is an intracellular serine/threonine protein phosphatase responsible for regulation of a variety of cellular processes.¹ PP2A is reported to contribute to metabolism, meiosis, mitosis, and apoptosis.^{2,3} It is the most abundant serine/threonine-specific phosphatase in mammals.¹

This product, isolated from human red blood cells, is a heterodimer consisting of a regulatory subunit, A, and a catalytic subunit, C, which make up the core enzyme. This enzyme will reconstitute to the ABC trimer with the addition of a regulatory B subunit. The A and C subunits each have an α and β isoform. Subunit B has multiple isoforms. Subunit A is a 588 amino acid protein with an average molecular weight of 65.1 kDa.⁸ Subunit C consists of 309 amino acids with an average molecular weight of 35.6 kDa.⁹

PP2A is involved in the regulation of several kinases and is known to dephosphorylate SV40 large T antigen and P53.⁵ It specifically dephosphorylates phosphoserine and phosphothreonine residues. PP2A is not specific for the dephosphorylation of phosphotyrosines. Activity of the enzyme is enhanced in the presence of Mn²⁺ and to a lesser extent by Mg²⁺.⁶ To maintain enzyme activity, sulphydryl compounds must be present.⁷

PP2A is inhibited by phosphate, phosphoesters, fluoride, and low levels of okadaic acid (<10 nM).⁷ It is resistant to protein phosphatase inhibitor-2 (I-2).⁷ Extremely low levels of serine kinase activity may be exhibited by PP2A. This activity is inhibited by EDTA.

PP2A is supplied as a solution in 20 mM MOPS, pH 7.5, 50% glycerol, 150 mM NaCl, 1 mM MgCl₂, 60 mM 2-mercaptoethanol, 2 mM EGTA, 0.1 mM MnCl₂, and 0.1 mg/mL serum albumin.

Unit definition: One unit will release 1 nanomole phosphate per minute from ³²P-labeled phosphorylase A at 30 °C, pH 7.5.

Product Information

Preparation Instructions

Prepare dilutions in 20 mM MOPS, pH 7.5, 150 mM NaCl, 60 mM 2-mercaptoethanol, 1 mM MgCl₂, 2 mM EGTA, 0.1 mM MnCl₂, 10% glycerol, and 0.1 mg/ml BSA.

Storage/Stability

Store product at –20 °C. Do not store at –70 °C. It is stable for 1 year if stored as recommended.

Store stock solutions in frozen aliquots at –20 °C.

Precautions and Disclaimer

This product is for laboratory research use only. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

References

1. Santoro, M. F., et al., Regulation of protein phosphatase 2A activity by caspase-3 during apoptosis. *J. Biol. Chem.*, **273**, 13119-13128 (1998).
2. Mumby, M. C., and Walter, G., Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. *Physiol. Rev.*, **73**, 673-699 (1993).
3. Gjertsen, B. T., and Doskeland, S.O., Protein phosphorylation in apoptosis. *Biochim. Biophys. Acta*, **1269**, 187-99 (1995).
4. Kamibayashi, C., et al., Comparison of heteromeric protein phosphatase 2A containing different B subunits. *J. Biol. Chem.*, **269**, 20139-20148 (1994).
5. Scheidtmann, K. H., et al., Dephosphorylation of SV40 large-T antigen and p53 protein by protein phosphatase 2A: inhibition by small-t antigen. *Mol. Cell. Biol.*, **11**, 1996-2003 (1991).
6. Usui, H., et al., Phosphoprotein phosphatases in human erythrocyte cytosol. *J. Biol. Chem.*, **258**, 10455-10463 (1983).
7. Reinhart, P. H., et al., Modulation of calcium-activated potassium channels from rat brain by protein kinase A and phosphatase 2A. *J. Neurosci.*, **11**, 1627-1635 (1991).
8. Hemmings, B. A., et al., Alpha- and beta-forms of the 65-kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating structure. *Biochemistry*, **29**, 3166-3173 (1990).

9. Stone, S. R., et al., The nucleotide sequence of the cDNA encoding the human lung protein phosphatase 2A alpha catalytic subunit, *Nucleic Acids Res.*, **16**, 11365-11365 (1988).

LKB/FEB/JWM 01/02