

Product Information

PKC θ , active, GST-tagged, human PRECISIO® Kinase recombinant, expressed in Sf9 cells

Catalog Number **K4643**

Lot Number 021M0604

Storage Temperature -70°C

Synonyms: PRKCQ, PRKCT, MGC126514,
MGC141919, nPKC-theta

Product Description

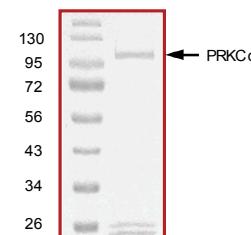
Protein Kinase C, theta (PKC θ) is an important component in the intracellular signaling cascade.¹ Recent studies have suggested local accumulation of fat metabolites inside skeletal muscle may activate a serine kinase cascade involving PKC θ leading to defects in insulin signaling and glucose transport in skeletal muscle.² Insulin resistance plays a primary role in the development of type 2 diabetes and may be related to alterations in fat metabolism. PKC θ is a crucial component mediating fat-induced insulin resistance in skeletal muscle and is a potential therapeutic target for the treatment of type 2 diabetes.²

This recombinant product was expressed by baculovirus in Sf9 insect cells using an N-terminal GST-tag. The gene accession number is NM 006257. It is supplied in 50 mM Tris-HCl, pH 7.5, with 150 mM NaCl, 0.25 mM DTT, 0.1 mM EGTA, 0.1 mM EDTA, 0.1 mM PMSF, and 25% glycerol.

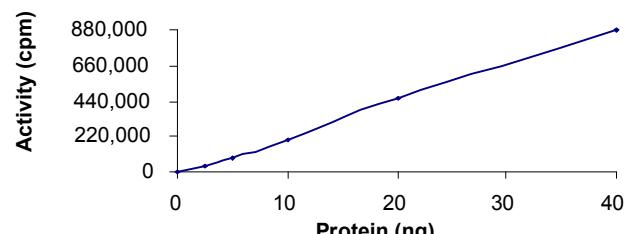
Molecular mass: \sim 110 kDa

Purity: \geq 70% (SDS-PAGE, see Figure 1)

Specific Activity: 673–911 nmole/min/mg (see Figure 2)


Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.


Storage/Stability

The product ships on dry ice and storage at -70°C is recommended. After opening, aliquot into smaller quantities and store at -70°C . Avoid repeated handling and multiple freeze/thaw cycles.

Figure 1.
SDS-PAGE Gel of Lot Number 021M0604:
 $>75\%$ (densitometry)

Figure 2.
Specific Activity of Lot Number 021M0604:
792 nmole/min/mg

Procedure

Preparation Instructions

Kinase Assay Buffer – 25 mM MOPS, pH 7.2, 12.5 mM glycerol 2-phosphate, 25 mM MgCl₂, 5 mM EGTA, and 2 mM EDTA. Just prior to use, add DTT to a final concentration of 0.25 mM.

Kinase Dilution Buffer – Dilute the Kinase Assay Buffer 5-fold with a 50 ng/ μl BSA and 5% glycerol solution.

Kinase Solution – Dilute the active PKC θ (0.1 μ g/ μ l) with Kinase Dilution Buffer to the desired concentration. **Note:** The lot-specific specific activity plot may be used as a guideline (see Figure 2). It is recommended the researcher perform a serial dilution of active PKC θ kinase for optimal results.

10 mM ATP Stock Solution – Dissolve 55 mg of ATP in 10 ml of Kinase Assay Buffer. Store in 200 μ l aliquots at -20 °C.

γ -³²P-ATP Assay Cocktail (250 μ M) – Combine 5.75 ml of Kinase Assay Buffer, 150 μ l of 10 mM ATP Stock Solution, 100 μ l of γ -³²P-ATP (1 mCi/100 μ l). Store in 1 ml aliquots at -20 °C.

Substrate Solution – Dissolve the synthetic peptide substrate (ERMRPRKRQGSVRRRV) in water at a final concentration of 1 mg/ml.

1% phosphoric acid solution – Dilute 10 ml of concentrated phosphoric acid to a final volume of 1 L with water.

Kinase Assay

This assay involves the use of the ³²P radioisotope. All institutional guidelines regarding the use of radioisotopes should be followed.

1. Thaw the active PKC θ , Kinase Assay Buffer, Substrate Solution, and Kinase Dilution Buffer on ice. The γ -³²P-ATP Assay Cocktail may be thawed at room temperature.
2. In a pre-cooled microcentrifuge tube, add the following solutions to a volume of 20 μ l:
10 μ l of Kinase Solution
7.5 μ l of Substrate Solution
2.5 μ l PKC lipid activator (0.5 mg/ml phosphatidylserine and 0.05 mg/ml diacylglycerol in 20 mM MOPS, pH 7.2, containing 1 mM CaCl₂). Sonicate lipid for 1 minute prior to use.
3. Set up a blank control as outlined in step 2, substituting 7.5 μ l of cold water (4 °C) for the Substrate Solution.
4. Initiate each reaction with the addition of 5 μ l of the γ -³²P-ATP Assay Cocktail, bringing the final reaction volume to 25 μ l. Incubate the mixture in a water bath at 30 °C for 15 minutes.

5. After the 15 minute incubation, stop the reaction by spotting 20 μ l of the reaction mixture onto an individually precut strip of phosphocellulose P81 paper.
6. Air dry the precut P81 strip and sequentially wash in the 1% phosphoric acid solution with constant gentle stirring. It is recommended the strips be washed a total of 3 times of ~10 minutes each.
7. Set up a radioactive control to measure the total γ -³²P-ATP counts introduced into the reaction. Spot 5 μ l of the γ -³²P-ATP Assay Cocktail on a precut P81 strip. Dry the sample for 2 minutes and read the counts. Do not wash this sample.
8. Count the radioactivity on the P81 paper in the presence of scintillation fluid in a scintillation counter.
9. Determine the corrected cpm by subtracting the blank control value (see step 3) from each sample and calculate the kinase specific activity

Calculations:

1. Specific Radioactivity (SR) of ATP (cpm/nmole)

$$SR = \frac{\text{cpm of } 5 \mu\text{l of } \gamma\text{-}^{32}\text{P-ATP Assay Cocktail}}{\text{nmole of ATP}}$$

cpm – value from control (step 7)
nmole – 1.25 nmole (5 μ l of 250 μ M ATP Assay Cocktail)

2. Specific Kinase Activity (SA) (nmole/min/mg)

$$\text{nmole/min/mg} = \frac{\Delta \text{cpm} \times (25/20)}{SR \times E \times T}$$

SR = specific radioactivity of the ATP (cpm/nmole ATP)

Δ cpm = cpm of the sample – cpm of the blank (step 3)

25 = total reaction volume

20 = spot volume

T = reaction time (minutes)

E = amount of enzyme (mg)

References

1. Manicassamy, S. and Sun, Z., The critical role of protein kinase C-theta in Fas/Fas ligand-mediated apoptosis. *J. Immunol.*, **178**, 312-319 (2007).
2. Kim, J K. et al., PKC-theta knockout mice are protected from fat-induced insulin resistance. *J. Clin. Invest.*, **114**, 823-827 (2004).

PRECISIO is a registered trademark of Sigma-Aldrich® Biotechnology LP and Sigma-Aldrich Co.

TD,MAM 02/11-1

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.