

3050 Spruce Street
Saint Louis, Missouri 63103 USA
Telephone 800-325-5832 • (314) 771-5765
Fax (314) 286-7828
email: techserv@sial.com
sigma-aldrich.com

Product Information

Ribonuclease H from *Escherichia coli*

Product Number **R 6501**

Storage Temperature -20 °C

Product Description

Enzyme Commission (EC) Number: 3.1.4.34

CAS Number: 9050-76-4

Molecular Weight: 17.6 kDa¹

Synonym: RNase H

Ribonuclease H from *E. coli* is an endoribonuclease that specifically hydrolyzes the phosphodiester bonds of RNA in RNA:DNA duplexes to generate products with 3'-hydroxyl and 5'-phosphate ends.^{1,2,3} RNase H degrades only the RNA component of the DNA-RNA hybrid (RNA that is hydrogen bonded to a complementary DNA strand). Other enzymes in *E. coli* which degrade RNA in the DNA-RNA hybrid are DNA polymerase I and exonuclease III, but these degrade either the RNA or DNA of the hybrids. Ribonuclease H will not cleave single-stranded or double-stranded DNA or RNA.^{1,2}

The pH optimum for ribonuclease H is 7.5 to 9.1. The enzyme is activated by Mg²⁺ (2 - 4 mM). RNase H is a sulfhydryl containing enzyme, and is activated by the presence of dithiothreitol and inhibited by N-ethylmaleimide.²

Ribonuclease H can be used in the following applications:

1. Facilitating the synthesis of double stranded cDNA by removing the mRNA strand of the RNA:DNA duplex produced during the first strand synthesis of cDNA.^{4,5}
2. Creating specific cleavages in RNA molecules by using synthetic deoxyoligonucleotides to create local regions of RNA:DNA duplexes.⁶

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.

Procedure

Reaction conditions for a 100 µl reaction:

20 mM HEPES-KOH Buffer, pH 8.0
50 mM KCl
4 mM MgCl₂
1 mM DTT
2 µg RNA:DNA Duplex
50 µg/ml BSA
1 Unit Ribonuclease H

Incubate for 20 minutes at 37 °C. Stop the reaction with 1 µl of 0.5 M EDTA.

The volume of the reaction, amount of DNA, units of enzyme, temperature, time, and method of stopping the reaction may be varied.^{4,5}

References

1. Kanaya, S. and Crouch, R.J., DNA sequence of the gene coding for *Escherichia coli* Ribonuclease H. *J. Biol. Chem.*, **258(2)**, 1276-1281 (1983).
2. Berkower, I., et al., Isolation and characterization of an endonuclease from *Escherichia coli* specific for ribonucleic acid in ribonucleic acid-deoxyribonucleic acid hybrid structures. *J. Biol. Chem.*, **248(17)**, 5914-5921 (1973).
3. Enzymes of Molecular Biology, Vol. 16, Burrell, M. M., ed., Humana Press (Totowa, NJ: 1993), pp. 74-77.

4. Short Protocols in Molecular Biology, 4th Ed., Ausubel, F. M., et al., eds., Wiley (New York, NY: 1999), pp. 3-34 - 3-35.
5. Ausubel, F.M., in Current Protocols in Molecular Biology, Vol. I, Ausubel, F.M., et al., eds. John Wiley and Sons (New York, NY: 2001), p. 3.13.2.
6. Donis-Keller, H., Site specific enzymatic cleavage of RNA. *Nucleic Acids Res.*, **7(1)**, 179-192 (1979).

TMG/JRC 12/03

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.