

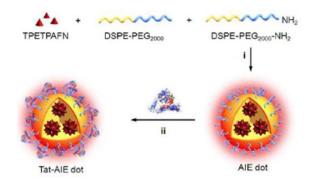
Data Sheet

LuminiCell Tracker™ 540- Cell Labeling Kit

SCT010

Pack Size 1 Kit

Store at 2-8 °C


FOR RESEARCH USE ONLY

Not for use in diagnostic procedures. Not for Human or Animal Consumption

Background

Long-term noninvasive cell tracking by fluorescent probes and quantum dots is of great importance to life science and biomedical engineering. Current methods used to fluorescently tag cells have been limited by short signal duration, high background auto-fluorescence or lengthy molecular cloning manipulations using GFP.

LuminiCell Trackers™ are biocompatible organic fluorescent nanoparticles based on Aggregation Induced Emission (AIEdot) technology. Aggregation induced emission (AIE) molecules emit fluorescence in an opposite manner than other common fluorophores (Quantum Dots, GFP). Propeller-shaped AIE fluorogens are non-emissive in solutions but become highly fluorescent upon aggregate formation. Due to these differences, LuminiCell Trackers™ have very high fluorescence intensities with minimal signal quenching allowing live cell fluorescent tagging for up to 10 days in vitro and 21 days in vivo. These properties make them optimal candidates for long interval live cell bioimaging experiments.

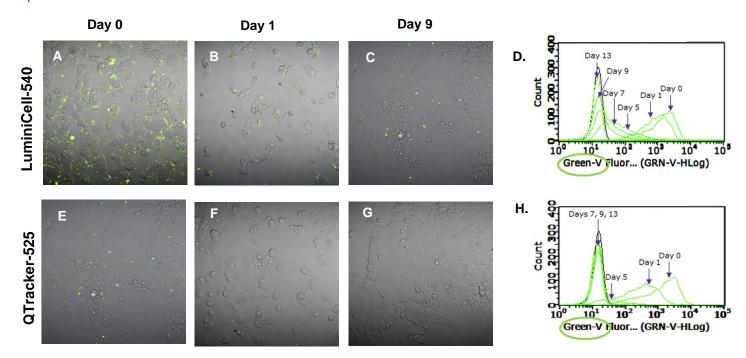
Figure 1. Fabrication of LuminiCell Tracker[™] nanoparticles includes encapsulation of the TPETPAFN AIE molecules within a DSPE-PEG200 outer shell with attached cell permeable TAT sequences.

Quality Control Testing

Absorbance: 422+-5 nm Concentration: 180-220 nM Fluorescence: 540+/- 10 nm

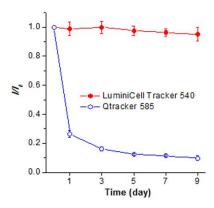
Quantum Yield: ≥ 50%

Brightness at 540nM: ≥ 3.0X10^7 M⁻¹cm⁻¹ **Cellular Assay**: HeLa Cell Fluorescence



Storage and Handling

• Store at -2-8 °C upon receipt. Thaw at room temperature or in a water bath. Do not Freeze.


Note: Some particulates may form as a result of nanoparticle aggregation during shipping. To get particulates back in solution, sonicate the vial containing LuminiCell TrackerTM three times for 1 min each before use.

Representative Data

Figure 1: LuminiCell Tracker™ 540 retains longer signal than QTracker 525. MCF-7 cells were plated at 800K cells per well of a 6-well plate overnight. Next day, 10 nM LuminiCell Tracker™ 540 or QTracker 525 were added and incubated for 4 hours and then imaged for Day 0 (**A**, **E**). Cells were washed twice with PBS before being detached with Accutase. Each cell suspension was diluted 1:2, 1:4, 1:8, 1:16 and 1:32, respectively, with growth medium and tracked for 13 days before imaging and flow analysis. The different dilution folds are necessary to make sure that there will be sufficient number of cells at the designated generation for imaging or flow cytometry (**D**, **H**). Diluted cells were imaged at Day 1, (**B**, **F**) and Day 9 (**C**, **G**). Fluorescent images were overlayed with brightfield images.

9 Day in-vitro Stability Experiment

Figure 2: Physical stability comparison between LC trackers and commercial Qtrackers when both were incubated in 1x PBS at 37°C for 0 to 9 days. I_o is the initial fluorescence intensity and I is the fluorescence intensity of the corresponding sample after designated time intervals

21 Day in-vivo Cell Tracking

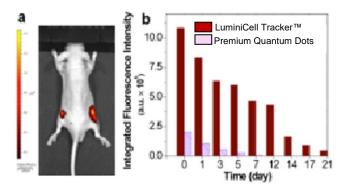


Figure 3: In vivo long term tracking: 21 days in vivo vs 7 days for QD (after subcutaneous injection of labeled cancer cells.

Protocols

Product Information

Product Name	Concentration	Storage	Shelf-life	Absorption Maximum	Emission Maximum
LuminiCell	200 nM in 1 X PBS,	2-8 °C	When store	423 nm	540 nm
Tracker™ 540	pH 7.4		as instructed,		
LuminiCell Tracker™ 670	200 nM in 1 X PBS, pH 7.4	2-8 °C	stable for at least 6 months	510 nm	670 nm

Compatible Instrument Parameters

Product Name	Laser Excitation (nm)	Filter (nm)	
LuminiCell Tracker™ 540	405/458/488	480-560	
LuminiCell Tracker™ 670	458/488/543	670-800	

Labeling Adherent Cells

- 1. Culture cells in an 8-well Millicell EZ slide (Cat. No. PEZGS0816) in a 5% CO2 incubator at 37 °C.
- 2. When cells reach 80% confluence, remove the medium and wash cells once with 1X PBS.
- 3. Prepare the labeling solution at 2 nM working concentration by diluting the stock LuminiCell Tracker™ solution using fresh growth medium.

Note: The working concentration is typically in the range of 2-10 nM depending on cell type and/or application requirements.

- 4. Add 0.2 0.4 mL of labeling solution into each well. For cells cultured on coverslips, pipet ~ 0.15 mL of labeling solution onto the cells grown on coverslips placed in a Petri dish.
- 5. Incubate cells in a 5% CO₂ incubator at 37 °C for ~1 hr.

Note: Longer incubation (4 - 12 hrs) can be used to achieve higher uptake efficiency depending on applications.

- 6. Gently wash the cells twice with growth medium.
- 7. Visualize the labeled cells using any suitable fluorescence microscope or flow cytometry with compatible lasers/filters (refer to the table below for excitation and emission wavelengths of LuminiCell Trackers™). For fixed cell imaging, replace step 6 above as follows:
 - a. Wash cells twice with 1X PBS and fix cells in 75% alcohol or 3.7% formaldehyde in PBS for 15 min.
 - b. Wash cells twice after fixation prior to fluorescence imaging.

<u>For flow cytometry or applications that require cell detachment</u>: Allow cells to recover in fresh growth medium for at 2 hours before detaching cells for flow cytometry or other applications.

Labeling Cells in Suspension

1. Prepare labeling solution at 2 nM working concentration by diluting the stock LuminiCell Tracker™ solution using fresh growth medium.

Note: The working concentration is typically in the range of 2 - 10 nM depending on the cell type and/or application requirement.

- 2. Add 0.2 0.4 mL of labeling solution to a tube.
- 3. Add 1 x 106 cells from a cell suspension (vol \sim 0.1 mL) in growth medium into the tube containing the labeling solution.
- 4. Incubate cells in a 5% CO_2 incubator at 37 °C for ~ 1 hr.
- 5. Wash cells twice with growth medium.

6. Visualize the labeled cells using any suitable fluorescence microscope preferred by the user or flow cytometry with compatible lasers/filters (refer to the table below for excitation and emission wavelengths of LuminiCell Trackers™).

References

- 1. Liu B, Tang BZ et al. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Sci Rep. 2013;3:1150.
- 2. Kang Y et al. Long-Term Tracking Mesenchymal Stem Cell Differentiation with Photostable Fluorescent Nanoparticles. ACS Appl Mater Interfaces. 2016 May 18;8(19):11925-33

Notice

We provide information and advice to our customers on application technologies and regulatory matters to the best of our knowledge and ability, but without obligation or liability. Existing laws and regulations are to be observed in all cases by our customers. This also applies in respect to any rights of third parties. Our information and advice do not relieve our customers of their own responsibility for checking the suitability of our products for the envisaged purpose.

The information in this document is subject to change without notice and should not be construed as a commitment by the manufacturing or selling entity, or an affiliate. We assume no responsibility for any errors that may appear in this document.

Technical Assistance

Visit the tech service page at SigmaAldrich.com/techservice.

Terms and Conditions of Sale

Warranty, use restrictions, and other conditions of sale may be found at SigmaAldrich.com/terms.

Contact Information

For the location of the office nearest you, go to SigmaAldrich.com/offices.

The life science business of Merck operates as MilliporeSigma in the U.S. and Canada.

