

Product Information

TACE Inhibitor Screening Assay Kit

Catalog Number **MAK218**

Storage Temperature –20 °C

TECHNICAL BULLETIN

Product Description

Tumor necrosis factor- α converting enzyme (TACE; ADAM17) is a member of the ADAM (A Disintegrin And Metalloprotease) protein family implicated in cell–cell and cell–matrix interactions.¹ TACE activates Notch signaling in the epidermal cells and has a critical function in the maintenance of barrier immunity.² It is also involved in neurogenesis³ and muscle development.⁴

The TACE Inhibitor Screening Assay Kit is a rapid, simple and sensitive assay that is suitable for high throughput screening of TACE inhibitors. TACE hydrolyzes a FRET-tagged substrate to release a fluorescent product ($\lambda_{\text{ex}} = 318/\lambda_{\text{em}} = 449$ nm), proportional to the enzymatic activity present.

Components

The kit is sufficient for 100 assays in 96 well plates.

TACE Assay Buffer	25 mL
Catalog Number MAK218A	
TACE Substrate	0.2 mL
Catalog Number MAK218B	
TACE Enzyme, 20 μ g	1 vL
Catalog Number MAK218C	
Inhibitor Control, 0.1 mM GM6001	20 μ L
Catalog Number MAK218D	

Reagents and Equipment Required but Not Provided

- 96 well flat-bottom plate – It is recommended to use black plates with clear bottoms for fluorescence assays.
- Fluorescence multiwell plate reader

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

Briefly centrifuge the vials at low speed before opening. To maintain reagent integrity, avoid repeated freeze/thaw cycles.

TACE Assay Buffer – Warm to room temperature before use.

TACE Enzyme – Reconstitute in 220 μ L of TACE Assay Buffer. Aliquot and store at –70 °C. Use within 1 week of reconstitution.

TACE Substrate and TACE Inhibitor – Ready to use. Store at –20 °C.

Storage/Stability

The kit is shipped on wet ice and storage at –20 °C, protected from light, is recommended.

Procedure

Sample Preparation

Prepare a 4 \times Sample Inhibitor Solution by mixing sample inhibitors with TACE Assay Buffer to 4 \times the final testing concentration. An initial concentrated inhibitor solution may be in a different solvent if the inhibitor is minimally soluble in the aqueous TACE Assay Buffer.

For unknown inhibitor samples, it is suggested to test several inhibitor concentrations.

An Inhibitor Control may be prepared by diluting 1 μ L of Inhibitor Control with 24 μ L of TACE Assay Buffer.

To correct for background in samples, include a Sample Blank by omitting the TACE Enzyme. The Sample Blank readings can then be subtracted from the sample readings.

Prepare an Enzyme Control (uninhibited enzyme) by using TACE Assay Buffer in place of sample inhibitor.

Add 25 μ L of sample inhibitor (4 \times Sample Inhibitor Solution), Sample Blank (4 \times Sample Inhibitor Solution), Enzyme Control (TACE Assay Buffer), or Inhibitor Control into duplicate wells of a 96 well plate.

Assay Reaction

1. Set up Inhibition Reaction Mixes according to the scheme in Table 1. 50 μ L of the appropriate Inhibition Reaction Mix is required for each reaction (well).

Table 1.
Inhibition Reaction Mixes

Reagent	Samples and Controls	Sample Blank
TACE Assay Buffer	48 μ L	50 μ L
TACE Enzyme	2 μ L	–

2. Add 50 μ L of the appropriate Inhibition Reaction Mix to each of the wells. Mix well using a horizontal shaker or by pipetting. Incubate the plate at 37 °C for 5 minutes. Protect the plate from light during the incubation.
3. Set up an Enzymatic Reaction Mix according to the scheme in Table 2. 25 μ L of the Enzymatic Reaction Mix is required for each reaction (well).

Table 2.
Enzymatic Reaction Mix

Reagent	Samples, Controls, and Sample Blank
TACE Assay Buffer	23 μ L
TACE Substrate	2 μ L

4. Add 25 μ L of the Enzymatic Reaction Mix to each reaction well. Mix well using a horizontal shaker or by pipetting.
5. Measure the fluorescence (FLU, $\lambda_{\text{ex}} = 318/\lambda_{\text{em}} = 449$ nm) in a microplate reader in kinetic mode for 30 minutes at 37 °C. Protect the plate from light during the incubation. It is recommended to take fluorescent readings every minute.

Results

Calculations

Plot the fluorescence (FLU) for each well versus time.

Choose two time points (T1 and T2) in the linear range of the plot and obtain the slope for each well between T1 and T2. Determine the FLU at each time (FLU1 and FLU2) and use them to determine the slope of the plot (FLU/minute).

Note: The Enzymatic Control must be set up each time the assay is run.

Subtract the slope of the Sample Blank from the slope of the samples to obtain the corrected measurement. Use the corrected measurement to determine the % Relative Inhibition.

% Relative Inhibition

$$\text{Slope} = (\text{FLU}_2 - \text{FLU}_1) / (T_2 - T_1) = \Delta\text{FLU}/\text{minute}$$

$$\% \text{ Relative Inhibition} = \frac{(\text{Slope}_{\text{EC}} - \text{Slope}_{\text{SM}})}{\text{Slope}_{\text{EC}}} \times 100\%$$

where:

Slope_{SM} = the slope of the Sample Inhibitor
 Slope_{EC} = the slope of the Enzyme Control

Note: Irreversible inhibitors that completely inhibit TACE activity will have $\Delta\text{FLU} = 0$. The % Relative Inhibition will be 100%.

Sample Calculation

$$\text{Slope}_{\text{SM}} = 0.435 \text{ FLU}/\text{min}$$

$$\text{Slope}_{\text{EC}} = 0.755 \text{ FLU}/\text{min}$$

$$\% \text{ Relative Inhibition} = \frac{(0.755 - 0.435)}{0.755} \times 100\% = 42.4\%$$

References

1. Christian, L.M., The ADAM family: Insights into Notch proteolysis. *Fly (Austin)*, **6**, 30–34 (2012).
2. Murthy, A. et al., Notch activation by the metallo-proteinase ADAM17 regulates myeloproliferation and atopic barrier immunity by suppressing epithelial cytokine synthesis. *Immunity*, **36**, 105–119 (2012).
3. Li, Q. et al., ADAM17 is critical for multipolar exit and radial migration of neuronal intermediate progenitor cells in mice cerebral cortex. *PLoS One*, **8**, e65703 (2013).
4. Pisconti, A. et al., Syndecan-3 and Notch cooperate in regulating adult myogenesis. *J. Cell Biol.*, **190**, 427–441 (2010).

Troubleshooting Guide

Problem	Possible Cause	Suggested Solution
Assay not working	Cold assay buffer	Assay Buffer must be at room temperature
	Omission of step in procedure	Refer and follow Technical Bulletin precisely
	Plate reader at incorrect wavelength	Check filter settings of instrument
	Type of 96 well plate used	For Fluorometric assays, use black plates with clear bottoms
Samples with erratic readings	Samples prepared in different buffer	Use the Assay Buffer provided or refer to Technical Bulletin for instructions
	Cell/Tissue culture samples were incompletely homogenized	Repeat the sample homogenization, increasing the length and extent of homogenization step.
	Samples used after multiple freeze-thaw cycles	Aliquot and freeze samples if needed to use multiple times
	Presence of interfering substance in the sample	If possible, dilute sample further
	Use of old or inappropriately stored samples	Use fresh samples and store correctly until use
Lower/higher readings in samples and standards	Improperly thawed components	Thaw all components completely and mix gently before use
	Use of expired kit or improperly stored reagents	Check the expiration date and store the components appropriately
	Allowing the reagents to sit for extended times on ice	Prepare fresh Reaction Mixes before each use
	Incorrect incubation times or temperatures	Refer to Technical Bulletin and verify correct incubation times and temperatures
	Incorrect volumes used	Use calibrated pipettes and aliquot correctly
Non-linear standard curve	Use of partially thawed components	Thaw and resuspend all components before preparing the Reaction Mixes
	Pipetting errors in preparation of standards	Avoid pipetting small volumes
	Pipetting errors in the Reaction Mix	Prepare Reaction Mixes whenever possible
	Air bubbles formed in well	Pipette gently against the wall of the plate well
	Standard stock is at incorrect concentration	Refer to the standard dilution instructions in the Technical Bulletin
	Calculation errors	Recheck calculations after referring to Technical Bulletin
	Substituting reagents from older kits/lots	Use fresh components from the same kit
Unanticipated results	Samples measured at incorrect wavelength	Check the equipment and filter settings
	Samples contain interfering substances	If possible, dilute sample further
	Sample readings above/below the linear range	Concentrate or dilute samples so readings are in the linear range

GD,KVG,LS,MAM 10/14-1