

KAPA Taq PCR Kit

KR0352 S - v2.17

Product Description

KAPA Taq DNA Polymerase is the single-subunit *Taq* DNA polymerase of the thermophilic bacterium *Thermus aquaticus*, purified from recombinant *Escherichia coli*. KAPA Taq DNA Polymerase has $5'\rightarrow 3'$ polymerase and $5'\rightarrow 3'$ exonuclease activity, but no $3'\rightarrow 5'$ exonuclease (proofreading) activity. The enzyme system has an error rate of approximately 1 error per 2.2 x 10^5 nucleotides incorporated. PCR products generated with KAPA Taq are A-tailed and are suitable for cloning into TA cloning vectors.

KAPA Taq DNA Polymerase is supplied with two reaction buffers (Buffer A and Buffer B) or a single buffer with loading dye, allowing convenient direct analysis of PCR product by agarose gel electrophoresis after cycling. KAPA Taq Buffer A (and KAPA Taq Buffer with dye) are standard Tris-ammonium sulphate-based buffers, while KAPA Taq Buffer B is a Tris-potassium chloride buffer. All KAPA Taq Buffers are 10X buffers, containing 15 mM MgCl₂ (1.5 mM at 1X). KAPA Taq DNA Polymerase may, however, be used in combination with any standard *Taq* buffer with a pH of 8.3 or higher.

Product Applications

KAPA Taq DNA Polymerase is ideally suited for:

- Routine PCR
- Amplification of DNA for Sanger sequencing
- Any standard PCR application for which a high-quality thermostable DNA polymerase is required.

Product Specifications

Shipping and Storage

KAPA Taq PCR kits are shipped on dry ice or ice packs, depending on the country of destination. Upon arrival, store kit components at -15°C to -25°C in a constant-temperature freezer. When stored under these conditions and handled correctly, full activity of the kit is retained until the expiry date indicated on the kit label.

Handling

Always ensure that the product has been fully thawed and mixed before use. Reagents may be stored at 2°C to 8°C for short-term use (up to 1 month). Return to -15°C to -25°C for long-term storage.

Quality Control

Effective date: September 2017

Each batch of KAPA Taq DNA Polymerase is confirmed to contain <2% contaminating protein (Agilent Protein 230 Assay). KAPA Taq PCR kits are subjected to stringent quality control tests, are free of contaminating exo- and endonuclease activity, and meet strict requirements with respect to DNA contamination levels.

Kit Codes and Components				
KK1014 (250 U)				
KK1015 (500 U)	KAPA Taq DNA Polymerase (5 U/μL) KAPA Taq Buffer A (10X) KAPA Taq Buffer B (10X) MgCl ₂ (25 mM)			
BK1000 (2500 U)				
BK1002 (5000 U)				
KK1008 (250 U)				
KK1016 (500 U)	KAPA Taq DNA Polymerase (5 U/µL) KAPA Taq Buffer A (10X)			
BK1001 (2500 U)	KAPA Taq Buffer B (10X) MgCl ₂ (25 mM) KAPA dNTP Mix (10 mM each)			
BK1003 (5000 U)	, ,			
KK1020 (250 U)				
KK1022 (500 U)	KAPA Taq DNA Polymerase (5 U/µL)			
BK1004 (2500 U)	KAPA Taq Buffer w/loading dye (10X) MgCl ₂ (25 mM)			
BK1006 (5000 U)				
KK1021 (250 U)				
KK1023 (500 U)	KAPA Taq DNA Polymerase (5 U/µL) KAPA Taq Buffer w/loading dye (10X)			
BK1005 (2500 U)	MgCl ₂ (25 mM) KAPA dNTP Mix (10 mM each)			
BK1007 (5000 U)				

Quick Notes

- KAPA Taq DNA Polymerase can replace any commercial Taq DNA polymerase in an existing protocol. The final MgCl₂ concentration may need to be optimized to account for differences in buffer formulation.
- KAPA Taq Buffers contain MgCl₂ at a final concentration of 1.5 mM.
- Buffer A is recommended as first approach and for applications requiring high yields.
- Buffer B is recommended for applications where high sensitivity is required (e.g. when the template is limiting).
- Both buffers may be evaluated to determine the buffer most suitable for a specific application.
- The KAPA Taq PCR system is suitable for the amplification of fragments up to 3.5 kb from genomic DNA or 5 kb from less complex targets.

KAPA Tag PCR Protocol

KAPA Taq DNA Polymerase can be used to replace any commercial *Taq* DNA polymerase in an existing protocol. To allow the most seamless integration of KAPA Taq into existing protocols, be sure to match reaction conditions, particularly the MgCl₂, primer and enzyme concentrations, as closely as possible.

Step 1: Prepare the PCR master mix

- Ensure that all reagents are properly thawed and mixed.
- Prepare a PCR master mix containing the appropriate volume of all reaction components common to all or a subset of reactions to be performed.
- Calculate the required volumes of each component based on the following table:

Component	25 μL reaction ¹	Final conc.
PCR-grade water	Up to 25 μL	N/A
10X KAPA Taq Buffer ²	2.5 µL	1X
25 mM MgCl ₂	As required ³	≥1.5 mM
10 mM dNTP Mix	0.5 μL	0.2 mM each
10 µM Forward Primer	1.0 µL	0.4 μΜ
10 µM Reverse Primer	1.0 µL	0.4 μΜ
5 U/µL KAPA Taq DNA Polymerase ⁴	0.1 μL	0.5 U
Template DNA	As required	As required⁵

 $^{^1}$ Reaction volumes of 10–50 μL are recommended. For volumes other than 25 μL , scale reagents proportionally.

 $\mbox{NOTE:}$ For GC-rich or other difficult templates or amplicons, include DMSO at a final concentration of 5%.

Step 2: Set up individual reactions

- Transfer the appropriate volume of PCR master mix, template and primer to individual PCR tubes/wells of a PCR plate.
- Cap or seal individual reactions, mix and centrifuge briefly.

Step 3: Run the PCR

• Perform PCR with the following cycling protocol:

Step	Temperature	Duration	Cycles
Initial denaturation	95°C	3 min¹	1
Denaturation	95°C	30 sec	
Annealing ²	T _m – 5°C	30 sec	35³
Extension	72°C	1 min/kb	
Final extension (optional) ⁴	72°C	1 min/kb	1
Hold	4–10°C	∞	1

¹ Initial denaturation for 3 min at 95°C is recommended for most assays. For GC-rich targets (>65% GC content), 5 min at 95°C may be used.

Manufacturing, R&D Cape Town, South Africa Tel: +27.21.448.8200 Fax: +27.21.448.6503

Technical Support sigma-aldrich.com/techservice

© 2017 KAPA is a trademark of Roche. All other product names and trademarks are the property of their respective owners.

 $^{^2}$ KAPA Taq Buffer A, KAPA Taq Buffer B and KAPA Taq Buffer with dye all contain a final MgCl $_2$ concentration of 1.5 mM at 1X.

 $^{^{\}rm 3}$ For assays requiring >1.5 mM MgCl₂, the reaction may be supplemented with additional MgCl₂ as required.

 $^{^4}$ For GC-rich and other difficult templates, higher enzyme concentrations (up to 2.5 U per 25 μL reaction) may be required.

 $^{^{\}text{5}}$ $\leq\!250$ ng for genomic DNA; $\leq\!25$ ng for less complex DNA (e.g. plasmid, lambda).

 $^{^2}$ An annealing temperature 5°C lower than the calculated melting temperature (T $_{\!_{m}}\!)$ of the primer set is recommended as first approach. If low yields and/or nonspecific amplification is obtained, an annealing temperature gradient PCR is recommended to determine the optimal annealing temperature for the primer set empirically.

 $^{^{3}}$ 35 cycles are sufficient for most assays. A higher number of cycles may be necessary for assays requiring a higher level of sensitivity.

 $^{^{\}rm 4}$ Final extension should be included if PCR products are to be cloned into TA cloning vectors.