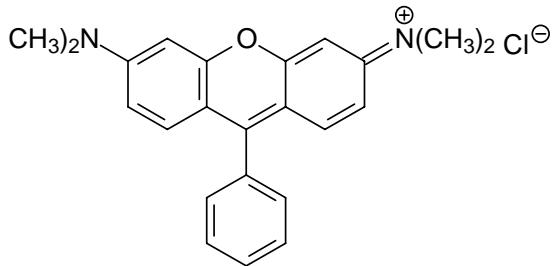


Product Information

Tetramethylrosamine Chloride

Product Number **T 1823**


Store at Room Temperature

CAS No. 6837-70-3

Synonym: 3,6-bis(Dimethylamino)-9-phenylxanthylum chloride; TMR

Product Description

Molecular formula: C₂₃H₂₃N₂OCl
 Mol. wt.: 378.9

Tetramethylrosamine chloride is a fluorescent dye taken up by functioning mitochondria and is retained as long as the organelle membrane remains intact. Fluorescence emission is at 574 nm with excitation at 550 nm, although excitation at 485 nm with emission at 640 has also been used.^{1,2} The fluorescence of tetramethylrosamine contrasts well with that of fluorescein (Ex. = 494 nm, Em. = 514 nm) for multicolor applications.

TMR is the oxidation product of the action of the horseradish peroxidase reaction with dihydrotetramethylrosamine.¹ It was also used to measure cellular and mitochondrial levels of reduced glutathione.^{9,5} The activities of PABC11, a member of the ATP-binding cassette protein family, and P-glycoprotein-mediated exclusion in multi-drug resistant cells have been studied using TMR.^{2,4}

Preparation Instructions

Prepare stock solutions in DMSO or DMF. Protect from light.

Storage/Stability

Store at room temperature. Protect from light.

References

1. Whitaker, J. E., et al., Dihydrotetramethylrosamine: a long wavelength, fluorogenic peroxidase substrate evaluated in vitro and in a model phagocyte. *Biochem. Biophys. Res. Commun.*, **175**, 387-393 (1991).
2. McAleer, M. A., et al., pABC11 (also known as MOAT-C and MRP5), a member of the ABC family of proteins, has anion transporter activity but does not confer multidrug resistance when overexpressed in human embryonic kidney 293 cells. *J. Biol. Chem.* **274**, 23541-23548 (1999).
3. West, J. A. A., et al., Heterogeneity of clara cell glutathione. A possible basis for differences in cellular responses to pulmonary cytotoxins. *Am. J. Respir. Cell Mol. Biol.*, **23**, 27-36 (2000).
4. Eytan, G. D., et al., Efficiency of P-glycoprotein-mediated exclusion of rhodamine dyes from multidrug-resistant cells is determined by their passive transmembrane movement rate. *Eur. J. Biochem.*, **248**, 104-12, (1997).

JWM 03/03

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.