Ascentis® Express 2.0 µm OH5 Column Care & Use Sheet

Ascentis Express 2.0 µm Description

Ascentis Express 2.0 µm OH5 is a high-speed, UHPLC column based on the Fused-Core® particle design. The Fused-Core particle provides a thin porous shell of high-purity silica surrounding a solid silica core. This particle design exhibits very high column efficiency due to the shallow diffusion paths in the 0.4 micron thick porous shell and the small overall particle size of 2 microns. The Ascentis Express 2.0 µm OH5 stationary phase is a highly polar ligand that possesses 5 hydroxyl groups tethered to the silica via novel proprietary linkage chemistry. This high performance material provides a column that can be used for traditional normal phase separations using non-polar, totally organic mobile phases (not discussed in this document) or for aqueous normal phase chromatography with the typical mobile phases for hydrophilic interactive liquid chromatography (HILIC) of basic, acidic, zwitterionic, or neutral compounds.

Column Characteristics

The Fused-Core particle has a surface area of \sim 120 m²/g and an average pore size of 90 Å. The Fused-Core particles are 30% to 50% heavier than commercially available totally porous particles due to the density of the solid cores. Therefore, the effective surface area per column is similar to columns packed with totally porous particles having surface areas in the 225-300 m²/g range

Operation Guidelines

- The direction of flow is marked on the column label. Columns should NOT be operated in a reverse-flow direction.
- A new column contains 90% acetonitrile/10% water. Initial care should be taken
 to avoid mobile phases that are immiscible with this mixture or could cause a
 precipitate.
- Ascentis Express 2.0 µm OH5 columns are best used at temperatures below 60 °C for maximum column life.
- Mobile phase pH for Ascentis Express 2.0 μm OH5 columns is best maintained in the range of pH = 2 to 9 for maximum column stability.

Column Care

To maximize column life, ensure that samples and mobile phases are particle-free. The use of guard columns or an in-line filter with 0.5 micron porosity between the sample injector and the column is highly recommended. The 1 micron porosity frits on Ascentis Express 2.0 µm OH5 columns are less subject to pluggage than are the 0.2-0.5 micron frits typically used with other small-particle columns, but these frits may allow a small number of packing particles to escape if the column is run in the reverse-flow direction. The column direction is indicated on the label and it should only be reverse flushed if other measures are not successful to remove inlet blockage. To remove strongly retained materials from the column, flush the column with very strong solvents such as 10/90 methanol and deionized water. Extreme cases may require the use of very strong solvents such as 100% of the most polar component of the mobile phase in use, which is typically water.

Column Storage

Long-term storage of silica-based columns is best in 100% acetonitrile. Columns may be safely stored for short periods (up to 3 or 4 days) in most common mobile phases. However, when using buffers, it is best to remove the salts to protect both the column and the HPLC equipment by first flushing the column with the same mobile phase without the buffer (e.g., when using 90/10 ACN/buffer, flush the column with 90/10 ACN/H $_2$ O) to eliminate any concern about salt precipitation or corrosion from the salts then flush the column with 100% acetonitrile for storage. Before storing the column, the end-fittings should be tightly sealed with the end-plugs that came with the column to prevent the packing from drying. After storing the column in 100% acetonitrile for a prolonged period of time, the packing material may become dehydrated, necessitating a rehydration treatment. We recommend flushing the column at reduced flow rate at room temperature overnight in 50% acetonitrile/water mixture.

Applications

HILIC is a useful and complimentary method to reversed-phase chromatography (RPC) and is especially attractive in situations where compound retention is poor in RPC. Retention in HILIC is not fully understood, but appears to be a combination of hydrophilic interaction, ion-exchange and hydrophobic retention. The aqueous layer which forms on the surface of HILIC particles promotes interaction with polar solutes. As a first approximation, retention in HILIC as a function of the mobile phase is opposite that in RPC. The strong mobile phase has high concentration of water and the weakest has a high concentration of organic solvent. For gradient separations the initial mobile phase has a high concentration of organic solvent and the gradient is formed by increasing the aqueous concentration. Greatest retention for many analytes is found when using more than about 70%

organic (e.g., acetonitrile) in acidic mobile phases. High organic concentrations are used in the mobile phases, therefore, HILIC is especially favorable for separations using mass spectrometry (MS) detection.

Acetonitrile is typically used as the weak organic solvent in the mobile phase. With this solvent, 95% is typically the upper limit and 50-60% the lower limit for adequate retention. At least 5% of the mobile phase should be the highly polar solvent such as water or methanol. Water should be the polar solvent if a buffer is included because of solubility limitations. The organic solvent can be varied to alter retention and selectivity. Solvent strength (from weakest to strongest) for HILIC generally is tetrahydrofuran < acetone < acetonitrile < isopropanol < ethanol < methanol < water, where water is the strongest elution solvent. To further alter retention, replacing water in the mobile phase with another polar solvent may be effective.

For optimum column efficiency and reproducibility, buffers in the range of 5 -50 mM concentration or additives in the 0.1%-0.5% range are used the mobile phase. Phosphate buffers are not generally recommended because of their poor solubility in high organic mobile phases and incompatibility with MS detection, although phosphoric acid at low concentrations can be employed, as long as sufficient water is present in the mobile phase. Additives such as formic acid, trifluoroacetic acid and acetic acid at concentrations up to about 1% can be a part of the mobile phase. HILIC separations can exhibit high load tolerance and efficiency, but with dependence on buffering capacity of the mobile phase. Injection from a suitable organic/water mixture is a must, when injection volume becomes significant. Ammonium formate/formic acid buffers up to a final concentration of about 50 mM and pH 3-5 are especially effective for analysis of basic and acidic compounds using MS detection with either ESI or APCI interfaces. (This volatile mobile phase buffer seems to be a good starting point for many separations of both basic and acidic compounds.) Ammonium acetate at pH 5-8 also have been used at concentrations of 1-20 mM, but are generally less favored for separating stronger basic and acidic compounds. Buffers or additives above pH 9-10 usually are not recommended, particularly at elevated temperature because of slow dissolution of the underlying silica support.

Guidelines for Low-Volume Columns

High performance columns with small internal volumes (shorter lengths, internal diameters <3 mm) are being increasingly used for high speed separations, especially with specialty detection systems such as mass spectrometers. These low-volume columns generate peaks having considerably less volume than those eluting from columns of larger dimensions (e.g., 4.6 mm x 150 mm). The efficiency of separations performed in low-volume columns is highly dependent on the HPLC system having components designed to minimize band spreading. All low-volume columns perform best when used with proper attention to the following factors:

- Detector Flow cells should be of low-volume design (preferably <2 μL).
- Detector To properly sense and integrate the often very fast peaks that elute from low-volume columns, the detector response time should be set to the fastest level (~0.1 second) and the integration software should sample the detector signal at least 20 points per second (40 points per second preferred).
- Injector The injection system should be of a low-volume design (e.g., Rheodyne Model 8125). Auto-samplers will often cause band spreading with low-volume columns but may be used for convenience with the expectation of some loss in column efficiency.
- Connecting Tubing The shortest possible lengths of connecting tubing
 with narrow internal diameters (at most 0.005-inch, 0.12 mm I.D.) should be
 used to connect the column to the injector and the detector cell. The tubing
 must have flat ends and should bottom out inside all fittings. Zero-deadvolume fittings should always be used where required.
- Peak Retention As retention is increased, the volume of a peak increases, decreasing the effects on band spreading caused by components of the instrument.
- Sample Solvent For isocratic separations, the sample should be dissolved in the mobile phase or in a solvent that is weaker (more polar) than the mobile phase. For gradient separations, the sample should be dissolved in the initial mobile phase or in a solvent substantially weaker than the final mobile phase.
- Injection Volume For isocratic separations, the volume of sample injected should be kept as small as possible (typically 2 µL or less). Sample volumes are less critical for gradient separations, especially if the sample is dissolved in a weak solvent.

Ordering Information

For ordering information or for technical support on this product, call 800-325-5832 (312-286-8032) or send an email to techserv@sial.com You may also visit **sigma-aldrich.com/express**

Trademarks

Ascentis — Sigma-Aldrich Co. LLC Fused-Core — Advanced Materials Technology, Inc. Rheodyne — Rheodyne, Inc.