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Abstract

Novel polyarylated adamantylphosphino ferrocene
(AdQPhos) and its Pd-precatalysts were synthesized

in multi-gram quantities in excellent yields and purity.
This catalytic system demonstrated remarkable activity
and selectivity towards palladium-catalyzed a-arylation
reactions, accommodating a wide range of nucleophiles,
including nitroalkanes, nitriles, amides, esters, and
ketones. Compared to the other state-of-the-art
catalysts, this system exhibited superior performance in
all these aforementioned transformations. Furthermore,
by integrating micellar catalysis, these catalysts
enabled such carbanion-mediated C-C couplings under
mild aqueous conditions mitigating the need for the
hazardous solvents like 1,4-dioxane D201863 or NMP
M79603. Notably, this work also presents the first
report for the a-arylation reactions involving cyclic
amides under aqueous conditions. Interestingly, the
a-arylations of esters proceeded smoothly without
employing Zn-enolates (Referomosky reagents),
addressing the step-efficiency challenges associated
with these reactions. In addition, challenging
a-arylations of 3° enolates as nucleophile to synthesize
4° carbon centers were also demonstrated with the
AdQPhos based catalytic system. The scalability of

this reaction was demonstrated with a pentagram

scale example.

Introduction

Palladium-catalyzed a-arylation reaction has emerged
as an important class of reactions primarily due to
their ability to forge C-C bonds between heavily
functionalized molecules.!-8 Such transformations are
extremely relevant in the synthesis of APIs,?3 natural
products,*® and agrochemicals.® Mechanistically,
these reactions proceed through the traditional Pd(0)/
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Pd(II) cycle, where, the transmetalating nucleophile

is typically derived from an enolate.® This approach
gives a facile and convenient route to access a-arylated
carbonyl compounds, compared to the traditional
multi-step cyclization strategies or S Ar reactions
carried out under harsher conditions.!%!! The first
generation variants of these reactions either employed
preformed enolates!?!3 or Zn-reagents (Reformatsky
reagent)!* as the nucleophiles. This approach was
extremely step-inefficient and raised considerable
operational difficulties, especially during the scale-up.
To overcome some of these challenges, independent
work from Buchwald!> and Hartwig'® showcased the
utilization of in situ generated enolates from the
respective carbonyl compounds. Since then, the field
has expanded significantly with the respect to the
range of enolate precursors, encompassing aldehydes,”
amides,'® esters, 820 acids,?! acid chlorides,??
nitroalkanes,?? nitriles,?* and more.® Process chemists
have explored this technology at scale for the synthesis
of various APIs and agrochemicals.?3

Despite significant progress in Pd-catalyzed «-arylation
of carbonyl compounds, several key challenges

remain (Figure 1). A major limitation is the lack

of a general and versatile ligand/catalytic system
capable of efficiently accommodating a broad range

of nucleophiles. This substantially impacts the

overall process efficiency, as chemists must dedicate
a significant amount of time and resources into
identifying an optimal ligand/catalytic system for each
desired transformation. Additionally, a-arylations
involving tertiary-carbon centered nucleophiles remain
poorly accommodated in this class.?® This is primarily
due to the inability of the traditional catalytic systems
to facilitate the transmetallation of the sterically
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challenging nucleophiles or the reductive elimination of
coupling partners from the Pd-center.?#2°> As a result,
these reactions often require elevated temperatures

or sophisticated ligands/precatalysts to proceed.?¢ In
addition to substrate and catalyst limitations, scalability
remains a major concern, with many reported protocols
proving difficult to reproduce under preparative

or industrial conditions. Moreover, the prevailing
reaction conditions rely heavily on using anhydrous
hazardous organic solvents, such as dioxane, NMP,

and benzene. The resulting environmental and safety
issues, compounded by increasingly stringent global
regulations, adversely affect the widespread adoption
of this methodology for bulk chemical production.

2 EWG — & .\ro
o & G

EWG : -NO,, -CN, -COR, COOR, COONR,, CHO, etc

Figure 1. Pd-Catalyzed a-arylation reactions

Notably, modern sustainable chemistry practices

have identified these hazardous solvents as the

major contributor to the overall waste generation and
pollution. From a pharmaceutical industry perspective,
about 85% of the mass employed for an API synthesis
is associated with solvent consumption.?” In addition,
many of these solvents also pose substantial health
risks to workers.?® For instance, NMP M79603 and
DMF D158550 are reported to be highly toxic to the
human reproductive system.?® Due to these reasons,
various environmental agencies are bringing stronger
regulatory legislations to limit their use unless it is
highly necessary. This forces chemists to find greener
alternatives.?®3% One prevailing approach in this field

is to employ water as the bulk reaction medium by
following mother nature’s lead.3!*? Over the last two
decades progress has been made in this area by
employing water as the bulk reaction medium, primarily
enabled by micellar catalysis.*:3* These micelles act

as the “nanoreactors” in the bulk medium, facilitating
a multitude of synthetic transformations under milder
aqueous conditions.3335 The pioneering contributions
by Lipshutz,*3” Handa,3®3° Gallou,***! Kobayashi,*

and others**“* have substantially advanced the field.
Increasing adoption of this technology by agrochemical
and pharmaceutical industries reflects its importance in
the context of sustainability and green chemistry.*>46

Hence, our goal is to leverage the use of water as a
solvent for palladium-catalyzed «-arylations under
milder conditions to improve sustainability and safety.
Conceptually, employing water as the reaction medium
is not ideal for these transformations as the carbanion

or related similar intermediates are unstable under
aqueous conditions. Recent independent reports from
the groups of Handa and Lipshutz demonstrated

that the "shielding effect” of micelles can extend

the life span of these sensitive intermediates under
aqueous conditions and effectively enable the desired
transformations.4’->° This was demonstrated in the
a-arylations of nitroalkanes,*® phenyl acetonitriles,*’
and ketones.>® Careful evaluation of these reports
revealed the exhaustive and time consuming screening
studies were performed in each of these a-arylations to
identify the ideal ligand/catalytic systems. For instance,
while the cationic complex t-BuXPhosPd(crotyl)OTf,
developed by Colacot et.al.,”* was demonstrated as the
most effective catalyst in a-arylations of nitroalkanes,
XPhosPd(crotyl)Cl developed by the same group was
used as a “nanocatalyst precursor for a-arylations of
nitriles”,** and the highly air sensitive [PdP(t-Bu);Br],
was concluded as the most active catalyst in
a-arylations of ketones.>° These examples demonstrate
the first challenge discussed earlier: “unavailability of
a versatile ligand/catalyst system for these reactions”.
Therefore, it is an important need to develop a general
ligand capable of accommodating a wide range of
nucleophiles for all classes of a-arylations under milder
conditions, although we are aware that there is not a
universal catalyst for every system. However, such a
leap could add considerable value to synthetic chemists
not only in academia, but also for those who want to
explore this technology for real world applications.
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Figure 2. Thermal ellipsoid plot of the AdQPhos ligand

A comprehensive literature evaluation in this direction
unveiled the progression of ligands employed in

these reactions, instigating from the bidentate BINAP
481084 and XantPhos 526460 to the more advanced
Buchwald's XPhos 638064 and RuPhos 66313152

as well as Hartwig's QPhos 675784 ligands.>*>> Among
these, the substitution patterns on Hartwig's QPhos is
notable, as such a polyarylated phosphino-ferrocene
exhibited excellent activity toward a broad range of
cross-coupling reactions. Given our work in developing
ferrocene based ligands, we decided to develop a

new catalyst using the polyarylated ferrocene core.>®
Modern ligand designs have demonstrated that the
incorporation of bulky adamantyl groups on the
phosphine has resulted in remarkable enhancement
of catalytic properties, as evidenced by Buchwald's
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findings with AdBrettPhos,>” Beller's studies on
CatacXium,®® Stradiatto's research on MorDalphos
derivatives,* Carrow's work on Ad;P® and our
recent report on MPhos.>® By combining Adamantyl
technology with the uniqueness of the QPhos Cp core,
we envisioned that adamantyl phosphino ferrocenes
(AdQPhos) might exhibit some unique activities in
the area of cross-coupling (Figure 3). Moreover, we
sought to establish a robust and scalable synthetic
protocol to enable the broader application of this
ligand class in preparative and industrially relevant
cross-coupling processes.
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Figure 3. AdQPhos and its precatalysts

Herein, we describe a very convenient and scalable
synthesis of new a class of adamantyl phosphino
ferrocene (AdQPhos 936189) and its palladium
complexes. These compounds exhibited remarkable
catalytic activity in various kinds of challenging
a-arylation reactions, accommodating a broad range

of nucleophiles. Studies were conducted in organic
solvents and in green aqueous conditions with relatively
low Pd loadings. We also explored these precatalysts for
the challenging a-arylations of tertiary centers, to test

their ability to create quaternary centers. The results of
the study are summarized below.

Results and Discussions

1. Ligand synthesis

The ligand synthesis started with the lithiation of
readily available starting material, bromoferrocene
725242, followed by quenching with Ad,PCl 737267
(Scheme 1, Part (a)). Interestingly, the ligand (1b)
was isolated by simple filtration as the product crashed
out from the reaction mixture. The corresponding
tBu,P ligand synthesis is extremely tedious due to

the isolation problems associated with the instability
of the intermediate in solution phase, byproduct
formation, and, as the consequence, the purification
process typically requires chromatography.>**> From a
process chemistry perspective, our approach is much
more process-economical and convenient. Notably,
the traditional installation of Ad,P group requires
harsh palladium-catalyzed coupling conditions>® or
requires stoichiometric or catalytic amounts of copper
salt, especially while synthesizing sterically hindered
phosphines, i.e. AdBrettPhos 768154 or MorDalPhos
751618.57>° Further, adopting a similar procedure
used for QPhos synthesis,>*>> the penta-arylation of
the bottom cp ring of 1a 923435 was achieved cleanly
under palladium catalyzed conditions to form the
desired product 1b.
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Scheme 1. Synthesis of (a) AdQPhos and (b) AdQPhos precatalysts.

aConditions: Bromoferrrocene (5.0 mmol), n-BuLi 8.18874 (5 mmol), Ad,PCl (5.5 mmol), THF 178810 (55 mL), -78 - 23 °C, 19 h; 1a (4.45 mmol),
NaO-tBu (44.5 mmol), ArCl 101389 (445 mmol), Pd(OAc), 205869 ( 0.225 mmol), 110 °C; °reaction scale was at 30 g of starting material.
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Unlike the QPhos synthesis, which typically requires

10 mol% Pd loading,>*>5 the synthesis of our AdQPhos
required only half of the Pd loading (5 mol%) although
the process was not fully optimized. We would also like
to emphasize that the synthetic protocol of AdQPhos
does not rely on tedious work-up or purification
techniques such as chromatography in comparison

to QPhos. In the case of our AdQPhos, the isolation
required only simple filtration followed by washing to
get analytically pure material. We were also able to
scale up the process to 30 g with similar isolated yield
in excellent purity. Subsequently, the Pd complexes
such as Buchwald’s palladacycles (G3 936197 2a, G4
936200 2b), oxidative addition complex (G6 2c), and
Colacot’s crotyl 936219 (2d) were synthesized following
the literature procedures in good to excellent yields
(Scheme 1, Part (b)).5%¢! All the ligands and precatalysts
were fully characterized by NMR spectroscopy, mass
spectroscopy and other analytical methods. The
authenticity of the ligand AdQPhos (1b) was further
confirmed with a single crystal X-ray study (Figure 2).

2. Application Studies

With AdQPhos and its precatalysts in hand, we

initiated our application studies focusing on assessing
their efficacy in various a-arylations encompassing
challenging nucleophiles, including enolates derived
from amides, esters, ketones, nitriles, and nitroalkanes.
To provide a comprehensive analysis, we compared the
relative performance of AdQPhos-based precatalysts
with other state-of-the-art catalysts for each class of
reactions. Remarkably, AdQPhos-based precatalysts
showed superior catalytic performances, surpassing
the activity of other precatalysts in all classes of
a-arylations. This accomplishment met our primary
objective of developing a general class of ligand/
precatalysts for these cross-coupling reactions.
Additionally, we achieved our secondary goal, as these
reactions demonstrated operational excellence both in
traditional organic solvents and environmentally benign
aqueous micellar conditions. The key findings in this
regard are discussed in the following sections.

2.1. c-arylation of oxoindoles.

The a-functionalization of cyclic amides, especially
oxoindoles, is notably significant, primarily through the
a-arylation method, which facilitates direct synthesis
of C-3 arylated oxoindoles.®?53 These structural motifs
are widely distributed in various natural products and
pharmaceutical targets,®>¢3 including anti-HIV agents,®?
and anti-tumor compounds.®3 Despite this significance,
such palladium-catalyzed C-3 arylations have not been
extensively explored in comparison to other types of
a-arylations.64-66

The first such exclusive study on oxoindoles was
reported by Willis and co-workers in 2008.%4 Later,
Buchwald reported an improved approach with the
development of the XPhos based catalytic system.®5
Until now, only <10 reports are available on this

topic despite the significant interest from medicinal
chemists.®4-%¢ In addition, to the best of our knowledge,
there are no existing literature reports on the usage

of micellar technology for the palladium-catalyzed
a-arylation of alkyl or cyclic amides. Taking this as a
technological challenge, we decided to explore our
AdQPhos based system for these reactions under milder
aqueous conditions.

We used 4-bromo-N, N-dimethylaminobromobenzene
242950 (3a) as the model substrate with N-methyl-2-
oxoindole 466921 (3b) as the nucleophile with NaOtBu
703788 as the base in conjunction with PS-750-M
911178 as the surfactant with water as the reaction
medium (Figure 4). Our rationale behind utilizing
PS-750-M micelles vs other commercially available
surfactants such as TPGS-750-M 763896, Brij-30, lies
in their higher inner-core polarity,3” which is crucial

for solubilizing polar amide enolates. For comparison
studies, we performed the standard reaction using
various AdQPhos Pd precatalysts, namely AdQPhos Pd
G3 2a, AdQPhos Pd G4 2b, AdQPhos Pd G6 2c, and
AdQPhos Pd(crotyl)Cl 2d, as well as several other state-
of-the-art precatalysts (see Table 1 for the % yields).
Gratefully, all the AdQPhos-based precatalysts (2a,2b,
2¢, and 2d) gave the desired product smoothly with
excellent conversions. No double arylation side products
were observed. The palladacycles 2a and 2b yielded
80% and 86% of the desired product (3c), respectively
(entries 1 and 2). As expected, the oxidative addition
complex 2c and crotyl variant 2d exhibited exceptional
activity, yielding 99% conversion to the desired product
with 92% isolated yield (entries 3 and 4). This could

be attributed to the easier generation and consumption
of active “L,Pd(0)"”. On contrast, the QPhos Pd G3
903027 or crotyl variants gave inferior conversions

to the desired product (31% and 50%, respectively,
entries 5 and 6). This clearly demonstrates the superior
catalytic activity of the adamantyl (Ad) substituted P
over the corresponding t-butyl analog. Other state-of-
the-art precatalysts, such as XPhos Pd G3 763381 gave
moderate conversion (59%, entry 7), whereas (dtbpf)
PdCl, 701602 and DavePhos Pd G3 804959, exhibited
poor conversions (traces and <5%) under similar
conditions (entries 8 and 9). Interestingly, t-BuXPhos
Pd G3 762229 demonstrated better activity with an
83% vyield of the 3c under standard conditions

(entry 10). Replacing the PS-750-M with other non-
ionic surfactant (2 wt% TPGS-750-M aqueous solution)
yielded inferior conversions to 3c (<39%, entry 12).

0 /
Br N 2 mol % catalyst N
/@’ 5 mo 2.0 equiv. NaO{Bu =
2wt % ag. PS-750-M \
Me;N \ .8 MeN Y

3a 3b 60 °C 3c

Figure 4. Synthesis of 3¢ (3-(4-(Dimethylamino)phenyl)-1-
methylindolin-2-one) from 4-bromo-N, N-dimethylaminobromobenzene
242950 and N-methyl-2-oxoindole 466921 with NaOtBu in conjunction
with PS-750-M 911178.

aConditions: 3a (0.55 mmol), 3b (0.5 mmol), [Pd] (2 mol %), NaOtBu
(1.0 mmol), 1.0 mL 3 wt % aq. PS-750-M, 60 °C, 20 h (all conversions
are based on 'H NMR).
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Table 1. % yields achieved with different precatalysts
during the optimization studies?

S. No Catalysts 3c (%)
1 AdQPhos Pd G3 (2a) 80
2 AdQPhos Pd G4 (2b) 86
3 AdQPhos Pd G6 (2c) 99
4 AdQPhos Pd(crotyl) CI (2d) 99 (92)
5 QPhos Pd G3 31
6 QPhos Pd(crotyl)Cl 50
7 XPhos Pd G3 59
8 (dtbpf)PdCl, traces
9 DavePhos Pd G3 traces
10 t-BuXPhos Pd G3 83
11 AdQPhos Pd(crotyl) CI (2d) 58 (50)b«c
12 AdQPhos Pd(crotyl) CI (2d) 39¢

bisolated yield in parentheses; <1 mL of 1,4-dioxane instead of 3 wt %
aqg. PS-750-M; 91 mL of 2 wt % aqg. TPGS-750-M instead of 3 wt % ag.
PS-750-M.

2 mol % AdQPhosPd(crotyl)Cl _

The superiority of PS-750-M could be due to the higher
polarity of its micellar inner core. From a sustainability
perspective, we performed the same reaction under
organic solvent conditions (1,4-dioxane). Only 58%
conversion was observed with 2d as the catalyst
(entry 11), further highlighting the sustainability
factor of our AdQPhos-based catalysts in a-arylation

of amides.

Further, the scope of this technology was subsequently
explored (Figure 5, 3c-3r). While expanding the scope,
we ensured to test the activity of the catalysts 2d
under both sustainable (aqueous micellar) as well as
the non-sustainable (1,4-dioxane) conditions. Under
micellar conditions, the reactions with 5-bromoindole
B68607 containing free N-H gave 67% of the desired
C-3 arylated product without any side reactions (3d).
Whereas under organic solvent conditions, the yield
was almost reduced to half (33%). This was primarily
due to the unwanted side reaction at the "N" center.
The sterically demanding 2-bromomesitylene B71608
also reacted smoothly with nucleophile 3b yielding,
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Figure 5. a-arylation of N-methyl-2-oxoindole (3b)? with different aryl halides using the catalyst AdQPhos Pd(crotyl) CI (2d) in reaction mediums

of PS-750-M in water and 1,4-dioxane.

aConditions: Ar-Br (0.55 mmol), Oxoindole (0.5 mmol), [Pd] (2 mol %), NaOtBu (1.0 mmol), 1.0 mL 3 wt % aq. PS-750-M, 60 °C, 20 h, isolated yield.
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80% of the desired product 3e. Similar to the previous
example, the reaction under non-sustainable conditions
only gave 46% of the desired product. Interestingly,
when 3b was reacted with the more sterically
challenging substrate bromo-tri-isopropylbenzene
(637939) the reaction yield remained excellent (92%,
3g). Furthermore, electron-rich aryl halides such as
N,N-dimethylbromobenzene, 4-bromomorpholinyl
benzene, 4-bromoanisole, 4-bromo tert-butyl benzene
were successfully introduced to the C3 position of the
oxoindole (3b) under these conditions with moderate-
to-excellent yields (3¢c-92%; 3f-81%, 3i-86%,
3j-90%). While evaluating the solvent effect on this
reaction, it became obvious that micellar technology
outperformed the traditional dioxane based reactions,
highlighting the effectiveness of our catalyst system
under sustainable aqueous micellar conditions. Notably,
this catalyst was inefficient in enabling the desired
cross-couplings of challenging quinoline substrates (3k,
3l), presumably due to the known catalyst deactivation
by quinoline binding. Similarly, naked oxoindoles are
not compatible with the current conditions due to the
formation of obvious side products in considerable
quantities (3m, 3n).

Moreover, we explored the scope of generation of
quaternary centers through this strategy with double
arylation of 3b. Comparing with the a-arylation of 20
enolates as discussed above, the reactions utilizing

39 enolates as nucleophile to synthesize 4° carbon
centers through the palladium-catalyzed «-arylation
reactions is considerably more challenging due to steric
factors associated with the enolates which limit their
transmetalation to the palladium center.® With slightly
increased catalyst and base loading (catalyst, 3 mol%;
base, 3 equiv.), the a-arylation reactions went smoothly
with decent isolated yields of the de-sired diarylation
products (Figure 5, 30-3r). For instance, irrespective
of the electronic nature of the electrophiles, products
30, 3p, and 3r were isolated with excellent yields
(81%, 90%, and 81% respectively). This approach also
accommodated heterocycles like benzothiophene with
moderate yield (3r, 70%).

2.2. Other «a-arylations

Following the successful implementation for micellar
a-arylations of oxoindoles, our research sought to
explore the applicability of AdQPhos-based precatalysts
in other a-arylations.

In this direction, we employed enolates derived from
phenyl acetonitriles, nitroalkanes, esters, and ketones.
Our objective was to evaluate the catalytic efficacy of
these precatalysts in comparison with the established
state-of-the-art catalysts. Through these extensive
comparative studies, we aimed to ascertain the
performance enhancements offered by our precatalysts,
thereby underscoring their potential significance in
advancing the traditional a-arylation methodologies.

We began our studies by studying the compatibility of
phenyl acetonitrile derived enolates for the
Pd-catalyzed a-arylation reactions under aqueous
conditions (Figure 6). In this context, pioneering
reports from Hartwig’s group had set foundations for
designing new catalysts and reaction conditions.?*
Following these lines, notable works from the Verkade®’
and Crudden?® groups, improved procedures to
accommodate broader substrate scope under milder
conditions. Recently, Gessner’s YPhos has shown
similar reactivity for the Hiyama-Denmark coupling.®
However, most of these protocols encountered had the
had the following drawbacks:

e high catalyst loadings due to catalyst poisoning due
to the Pd-CN binding,

e elevated reaction temperatures (to promote
reductive elimination),

e need of stronger bases such as LiIHMDS 324620
and NaHMDS 235083, and

e the use of hazardous organic solvents as the
reaction medium.

In addressing these challenges, recently, Handa and
co-workers reported a micellar nanocatalytic approach
based on PS-750-M,4” although the challenges of

a.
Br MeO 2 mol % catalyst CN .
/©/ + O/\CN 2.0 equiv. KOH . O O e
3wt % ag. PS-750-M
MeO
. ab 60 °C MeQ "
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© i 0 MeO
an 5a Dioxane, 60 °C 5b
c.
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=
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MeoN :
? 3a 6a M82N 6b

Figure 6. (a) a-arylation of 3-methoxy phenyl acetonitrile 209392 (4b); (b) a-arylation of nitropropane 8.06851 (5a); (c) a-arylation of tert-butyl acetate (6a).
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catalyst recyclability and synthetic reproducibility using
nanocatalysis still persist. It is important to note that,
based on our literature search, until today, there is not
a homogenous catalyst system which could address

all of the four challenges mentioned earlier. We were
curious to see if our AdQPhos-based system could
address some of these challenges.

We started our optimization studies employing
3-methoxy phenyl acetonitrile 209392 (4b) as the
nucleophile, 4-bromoanisole B56501 (4a) as the
electrophile, KOH as the base, and aqueous micelles of
PS-750-M as the reaction medium (Figure 6, Part (a)).
To showcase the effectiveness of our AdQPhos-

based system over others, we also performed an
extensive control study with other catalysts. To our
delight, the desired product 2-(3-methoxyphenyl)-
2-(4-methoxyphenyl)acetonitrile 4c was obtained in
excellent yields with palladacycles 2a and 2b (89% and
949% respectively; Table 2, entries 1 and 2).

The reaction was further improved to 98-99%

with the crotyl or G6 variants (entries 3 and 4). In
consistent with the previous optimization studies,

the reaction yields dropped substantially while using
QPhos palladacycle or its crotyl variants (60% and
82%, respectively; entries 5 and 6). The conversion

to the desired product 4c dropped to 59% when the
bisphosphine-based (dtbpf)PdCl, was used as the
catalyst (entry 7). The reaction yields remarkably
improved when XPhos Pd G3 was used (88%, entry 8).
This comparative study indicated the superiority of
AdQPhos-based precatalysts over traditional biaryl or
other types of the state-of-the-art phosphines.

Table 2. Pd-catalyzed a-arylation of nitriles
-comparative study

Entry Catalyst 4c (%)? Entry Catalyst 4c (%)?
1 ﬁg%ghg’;a) 89 5 QPhosPdG3 60
2 oo %Zh?fb) o4 6 Pd(izzr:tc;/sl)CI 82
3 ﬁg%‘;"?;c) 99 7 (dtbpf)Pdcl, 59
4 AdQPhos 98 8  XPhos Pd G3 88

Pd(crotyl)Cl (2d)

aConditions: 4a (0.6 mmol, 1.2 equiv.), 4b (0.5 mmol, 1.0 equiv.), [Pd]
(0.015 mmol, 3 mol%), KOH (1.0 mmol, 2.0 equiv.), 1.0 mL 3 wt% aq.
PS-750-M

Further, the suitability of our AdQPhos systems in
the a-arylations of nitroalkane was studied and
compared to the traditionally employed catalytic
systems (Figure 6, Part (b)).?3%° This particular type
of a-arylation has been relatively underexplored,
although the resulting products are the key
precursors for accessing functionalized secondary/
tertiary amines. Previously, the Buchwald® and
Kozlowski??* groups independently reported conditions
for this transformation with some critical insights

on mechanistic pathways. However, these protocols
suffered serious limitations such as (a) higher [Pd]
loadings (up to 10 mol%), (b) toxic organic solvent
usage, and (c) operational difficulty where the
experiments were performed under the glove-box
conditions. Later, in 2017, Handa and co-workers

reported an improved technology by introducing
micellar catalysis.*® However, their method only
explored the nitroethane and nitropropanes as the
nucleophiles, and the reaction yields with nitropropane
were moderate for most substrates studied therein.

In our current study, we started our studies using
4-bromoanisole (4a) and nitropropane 8.06851 (5a)

as the model coupling partners with K;PO, as the base
under organic solvent conditions (1,4-dioxane) with
lowered catalyst loading (3 mol %) in comparison to
those reported (up to 10 mol %). The catalytic activity
of the AdQPhos Pd-precatalysts was compared with
other state-of-the-art precatalysts. Notably, the desired
reaction proceeded smoothly without double arylations
when employing AdQPhos precatalysts (2a, 2b, 2c, and
2d) (Table 3).

Table 3. Pd-catalyzed a-arylation of nitroalkanes
-comparative study

Entry Catalyst 5b (%) Entry Catalyst 5b (%)?
1 AdQPhos Pd G3 57 7 XPhos Pd G3 75
(2a)
2 (Azdl?)Phos Pd G4 59 8 DavePhos Pd G3 traces
3 AdQPhos Pd G6 99 9 (dtbpf)PdCl, 28
(2¢)
AdQPhos b _
4 Pd(crotyl)Cl (2d) 99 (96) 10 t-BuXPhos Pd G3 97
AdQPhos b
5 QPhos Pd G3 traces 11 Pd(crotyl)Cl (2d) 98 (90)
6 QPhos PA(Croty)  races 12 t-BuxPhosPdG3  31¢

2Conditions: 4a (0.5 mmol), 5a (2.5 mmol), [Pd] (3 mol%), K;PO,
(0.75 mmol), 1.0 mL 1,4-dioxane, 60 °C, 20h (conversions are based
on GC); isolated yield; <1mL of 3 wt% aqg. PS-750-M instead of
1,4-dioxane; ¢1mL of 2 wt% aq. TPGS-750-M instead of 1,4-dioxane.

Although under the standard reaction conditions

with palladacycles 2a and 2b moderate yields (57%
and 59%, respectively) of the desired product
2-(4-methoxyphenyl)butanenitrile 5b (entries 1 and 2)
were observed, the G6 or crotyl variants of AdQPhos
exhibited excellent activity with an impressive 99%
conversion to the desired product (96% isolated yield,
entries 3 and 4). Similar to the previous a-arylation
with amides, the QPhos-based Pd G3 or crotyl variants
only gave <10% of 5b, showcasing the remarkable
superiority of our AdQPhos based catalyst system
(entries 5 and 6). Buchwald’s XPhos Pd G3 gave
moderate conversion (75%) whereas DavePhos Pd

G3 gave only traces of 5b (entries 7 and 8).

The bidentate ferrocene-based precatalyst, (dtbpf)
PdCl,, also gave poor conversions (28%) under similar
conditions (entry 9). Interestingly, t-BuXPhos Pd G3
showed excellent reactivity, resulting in a 97% yield of
the desired product 5b under these conditions

(entry 10). With the effort to replace the hazardous
solvent, 1,4-dioxane in this case, with water using
micellar catalysis, we conducted extensive screening
studies to identify suitable micellar media. With the
micelles of PS-750-M, utilizing 2d as the catalyst, we
achieved a remarkably high yield (98%) of 5b under
standard conditions (entry 11). In contrast, the use

of t-BuXPhos Pd G3 under micellar conditions was
ineffective as the reaction yield dropped to <31%
(entry 12) in comparison to the reaction in organic
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solvent (97%, entry 10). These extensive screening
studies demonstrated the superior adaptability and
activity of AdQPhos-derived precatalysts over other
state-of-the-art catalysts for this class of reaction.

In order to broaden the scope of nucleophiles in the
a-arylations enabled by AdQPhos and its pre-catalysts,
we explored esters in this study (Figure 6, Part (c)).
Such a-arylations reactions are one of the most
challenging classes of reactions due to:

e Instability of enolate (decomposition to ketene or
possible decarboxylation)”°7t

e Ester hydrolysis under the reaction conditions*®

e Catalyst poisoning due to the possible difficulties in
the reductive elimination?®

To overcome these challenges, current strategies often
employ masked ester nucleophiles such as Reformatsky
reagents,!® silyl enol ethers, or, silyl ketene acetals,
etc.,”>'3 These approaches, however, suffered from
several limitations, including step inefficiency, reliance
on hazardous reagents, and operationally challenging
protocols.*372 Consequently, a catalyst-enabled
economically feasible protocol for a-arylation reactions
involving esters remains elusive despite the extensive
presence of a-arylated esters in APIs,’374 and natural
products.*7> In this direction, we started our studies

by employing the precatalysts of AdQPhos for the
a-arylation of a nucleophile, tert-butyl acetate 8.02189
(6a@) with 4-bromo-N, N-dimethylaminobromobenzene
(3a) using toluene as the reaction medium. To evaluate
the performance of AdQPhos precatalysts, we compared
them with other state-of-the-art catalysts (Table 4).
The AdQPhos-derived precatalysts (2a, 2b, 2c, and

2d) gave 39%, 54%, 99%, and 80%, respectively, of
the desired product tert-butyl 2-(4-(dimethylamino)
phenyl)acetate 6b, without any detectable amounts

of possible diarylated product (entries 1-4). It is
evident that the Pd G6 version of the AdQPhos ligands
showed excellent activity. In contrast, corresponding
precatalysts derived from QPhos only gave trace yields
(8% and 32 %, entries 5, 6) for 6b. Such a lowered
conversion is somewhat anticipated: typically, to
enable such reactions using QPhos-based catalysts, the
Reformatsky-type reagents are used as the nucleophile.
Other ferrocene-based bidentate ligands like dtbpf did
not yield any detectable product (entry 7), reiterating
the demand for a monodentate phosphine containing
an Ad moiety on the phosphorus. We also benchmarked
the reaction with other oxidative addition complexes of
monophopshines, such as Buchwald’s RuPhos Pd G6,
which gave only 74% of the desired product (entry 8).

Table 4. Pd-catalyzed a-arylation of ester
-comparative study

Entry Catalyst 6b (%)* Entry Catalyst 6b (%)
1 ?;aQ)PhOS Pd G3 39 5 QPhos Pd G3 8
P ,(Azdéz)Phos Pd G4 54 6 QPhos lz::(crotyl) 32
3 ?ngph"s PAGE  g9(91) 7 (dtbpf)PdCl, n.d
4 AdQPhos 80 8  RuPhos Pd G3 74

Pd(crotyl)Cl (2d)

aConditions: 3a (0.6 mmol, 1.2 equiv.), 6a (0.5 mmol, 1.0 equiv.), [Pd]
(0.015 mmol, 3 mol%), LIHMDS (1.0 mmol, 2.0 equiv.), 1.0 mL
3 wt% aqg. PS-750-M or 1,4-dioxane 60 °C, 20 h; ‘isolated yield
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These extensive comparative studies demonstrated the
versatility of AdQPhos-derived precatalysts in enabling
a-arylations of diverse array of nucleophiles as well as
their superiority over traditionally employed state-of-
the-art Pd-precatalysts. This key observation positions
the AdQPhos systems as potentially universal catalysts
for Pd-catalyzed a-arylation reactions. Following these
studies, the scope of these desired transformations was
evaluated under our optimized conditions. We started
our substrate scope evaluations with the a-arylations
of phenyl acetonitriles (Figure 7, Part (a), 4d-4h).
During these studies, we performed the reactions under
both aqueous and organic solvent conditions to gain
insights into the solvent's influence on each «-arylation
reactions. All the reactions proceeded with moderate-
to-excellent yields, no dehalogenations or other side
reactions were observed with the nitriles containing
chloro groups (4d, 82%; 4h, 86%). Heterocycles such
as 4-morpholinyl containing aryl bromides readily
reacted with nitriles to yield the desired products in
good yields (4d, 82%; 4g, 81%). Electron-rich (4d,
49) or deficient (4e, 4h) or neutral substrates (4f)
participated in the desired reactions without causing
any significant drop in yield. It is important to note
that, these reactions proceeded effectively only under
aqueous conditions. Under the conventional organic
solvent conditions (e.g. 1,4-dioxane), considerably
lower amounts of products were formed (4d-4h). This
observation emphasizes the superiority of our AdQPhos
in enabling sustainable Pd-catalyzed cross-coupling
reactions by leveraging micellar catalysis.3?

Further, we extended our substrate scope evaluations
for the nitro alkane a-arylations. Similar to the nitrile
a-arylation we performed reactions under both
aqueous and organic solvent conditions. Conspicuously,
the reaction yields were superior under organic
solvent compared to surfactant conditions for most
substrates, although moderate to good yields were
typically obtained from the reactions employing
micellar technology (Figure 7, Part (b), 5b-5f).
Nevertheless, our AdQPhos-based catalysts exhibited
remarkable versatility, accommodating a wide range
of aryl bromides. The electron-withdrawing (5f), and
electron-donating (5b-5e) functional group containing
substrates participated in the reaction effectively, to
yield the desired product in moderate to excellent
yield. The reaction exhibited favorable outcomes when
dealing with substrates bearing heterocycles (5e).

Next, the scope of a-arylation of esters was briefly
evaluated by exploring different combinations of aryl
halides and esters (Figure 7, Part (c), 6b-6e). It is
important to note that under our reaction conditions,
even with excess electrophiles, the reaction exclusively
produced monoarylated ester products. Furthermore,
these reaction conditions proved to be compatible

with ethyl esters (6¢, 6e), which are prone to base-
mediated hydrolysis under typical reaction conditions.
The reaction yields achieved with these conditions
ranged from moderate to excellent, highlighting the
versatility and effectiveness of our protocol which
accommodated electron-rich and heterocyclic aryl
halides as electrophiles effectively. On the nucleophile
side, the protocol demonstrated compatibility with both
alkyl and benzyl esters. Notably, quinoline based aryl
halides seems to have issues under current conditions.
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Figure 7. (a) a-arylation of nitriles, conditions: Ar-Br (0.6 mmol, 1.2
equiv.), 1.0 mL 3 wt% aqg. PS-750-M or 1,4-dioxane 60

Additionally, the catalytic activity of AdQPhos or its
precatalysts were evaluated for the a-arylation of
ketones (Figure 7, Part (d)). Despite the numerous
reports on the utilization of organic solvents, primarily
employing hazardous solvents (1,4-dioxane or NMP),’6
only a few studies have focused on enabling these
reactions under milder and environmentally benign
conditions, i.e., using water as the solvent.*® In this
regard, recently, Lipshutz and coworkers developed

equiv.), ArCH,CN (0.5 mmol, 1.0 equiv.), [Pd] (3 mol%), KOH (1.0 mmol, 2.0

a new technology under aqueous conditions by using
[PdP(t-Bu);Br], as a catalyst (up to 1 mol%), aqueous
micelles of TPGS-750-M as a reaction medium and
KOt-Bu as the base.>® It is worthwhile to highlight that
the Pd(I) dimer of t-Bu,P is one of the most unstable
Pd catalyst; hence, it often causes issues in reproducing
the results. With our bench-stable AdQPhos Pd G4 (up
to 1 mol %), the reactions were carried out in water
using a readily available base KOH in conjunction with



a new generation biodegradable surfactant, "Savie"
developed by Lipshutz.”” A short substrate scope
evaluation was performed to showcase the generality of
this versatile catalyst (Figure 7, Part (d)). The reaction
proceeded smoothly for cyclic (7a-7c, 7g-7j) and
acyclic ketones (7d, 7e) with moderate-to-excellent
yields. We continued assessing the solvent effect on
catalysis by performing each reaction under aqueous
and traditional organic solvent conditions. The coupling
between cyclic ketone a-tetralone and sterically
challenging 2-bromomesitylene proceeded smoothly

to yield desired product 7a with excellent yield under
aqueous conditions (87%). Under organic solvent
conditions, the reaction yield was only 71% with
remaining unreacted starting materials (ketone and aryl
halide). Furthermore, this approach was compatible
with various heterocycles, including indoles bearing
free N-H (7b), benzothiophenes (7c), and benzofurans
(7e), with excellent isolated yields. Notably, unlike the
a-arylation of nitroalkanes, the reactions on ketones
proceeded more efficiently under micellar conditions
than under traditional organic solvent conditions for
most of the substrates, which, again, demonstrates the
sustainability contributions from our AdQPhos-based
system in the a-arylation chemistry.

Combining all these studies, we demonstrated that

the AdQPhos-based system is a general practical
catalytic system for the palladium-catalyzed a-arylation
reactions under organic solvent as well as under green
aqueous conditions.

Scalability & Sustainability Score

To demonstrate the scalability of our AdQPhos-based

technology for potential commercial applications, we

picked the amide a-arylation reactions and performed
at a pentagram scale.

The expected a-aylated amide product, 3-mesityl-1-
methylindolin-2-one 3e, was isolated in 91% vyield,
highlighting the usability of our AdQPhos-based

Featured Product

DOZN Score = 54

by
©I\): /él 2mol%2d  MeN._ =
3b T NaO®Bu \

/
(5 g, 33.9 mmol) aqg. PS-750-M .
9 % gO oc0sM (B181%)

Figure 8. Gram-scale example. Synthesis of 3-mesityl-1-
methylindolin-2-one 3e from N-methyl-2-oxoindole 466921 and
2-bromomesitylene B71608.

system in reaction scale-up. The sustainability score

of this reaction was evaluated using DOZN™.78 As the
reaction was conducted under micellar conditions,

the environmental impact of this transformation was
remarkably lower compared to the traditional methods,
and this was clearly reflected in the lower DOZN™
score of 54.

Conclusions

In summary, we have developed a new class of
polyarylated diadamentylphosphino ferrocene
(AdQphos) and its precatalysts as versatile catalytic
systems for the Pd-catalyzed a-arylation reactions.
The ligand synthesis is simple, scalable and does not
involve tedious workups or purification techniques.
The scope and superiority of this catalytic system
were demonstrated for a wide variety of nucleophiles,
including nitroalkanes, nitriles, amides, and ketones.
Most importantly, by incorporating catalysis in

water under micellar conditions, AdQphos-based
catalytic system demonstrated the feasibility of
enabling a-arylation reactions under milder aqueous
conditions by replacing toxic/hazardous solvents
such as 1,4-dioxane or NMP with some exceptions,
bringing modern organic synthesis closer to being
ideally sustainable.

Product Cat. No. Portfolio
Catalysts and Precatalysts

AdQPhos 936189

AdQPhos Pd G3 936197

AdQPhos Pd G4 936200 Sigma-Aldrich®
AdQPhos Pd(crotyl)Cl 936219

Di-1-adamantylphosphinoferrocene 923435
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Product List

Description
Ligands & Catalysts

rac-BINAP, 97%

Cat. No. Portfolio

481084

Xantphos, 97%

526460

Xphos, 98%

638064

RuPhos, 98%

663131

1,2,3,4,5-Pentaphenyl-1’-(di-tert-butylphosphino)ferrocene (QPhos)

675784

MorDalphos, 97%

751618

AdBrettPhos, 95%

768154

QPhos Pd G3, powder

903027 Sigma-Aldrich®

XPhos Pd G3, 98%

763381

DavePhos-Pd-G3, 95%

804959

tBuXPhos Pd G3, 98%

762229

DL-a-Tocopherol methoxypolyethylene glycol succinate (TPGS-750-M), powder

763896

Palladium(II) acetate, reagent grade, 98%

205869

[1,1’-Bis(di-tert-butylphosphino)ferrocene]dichloropalladium(II), 98%

701602

Bromoferrocene, solid
Building Blocks

4-Bromo-N,N-dimethylaniline, 97%

725242

242950

N-Methyl-2-oxoindole, 97%

466921

5-Bromoindole, 99%

B68607

1,3,5-Tris(4-bromophenyl)benzene, 97%

648906

3-Methoxyphenylacetonitrile, 99%

Sigma-Aldrich®
209392

4-Bromoanisole, 299.0%

B56501

1-Nitropropane, for synthesis

8.06851

2-Bromomesitylene, 98%
Solvents & Reagents

NMP, ReagentPlus®, 99%

B71608

M79603

N,N-Dimethylformamide, ReagentPlus®, 299.0%

D158550

Tetrahydrofuran, ReagentPlus®, >99.0%

178810

Chlorobenzene, ReagentPlus®, 99%

Sigma-Aldrich®
101389

1,4-Dioxane, ReagentPlus®, 299.0%

D201863

Chlorobenzene, ReagentPlus®, 99%
Caustic Alkali & Bases

Sodium tert-butoxide, 99.9%

101389

703788

Butyllithium, (15% solution in n-hexane) for synthesis

8.18874

Lithium bis(trimethylsilyl)amide, 97%

Sigma-Aldrich®
324620

Sodium bis(trimethylsilyl)amide, 95%
Surfactants

PS-750-M solution, 3 wt. % in H,O

235083

911178 Sigma-Aldrich®
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