

Product Information

4-Amidinophenylmethanesulfonyl fluoride hydrochloride

Product Number **A 6664**

Storage Temperature -20 °C

Product Description

Molecular Formula: C₈H₉FN₂O₂S • HCl

Molecular Weight: 252.7

CAS Number: 74938-88-8

Melting Point: 190-191 °C¹

Synonym: (p-Amidinophenyl)methanesulfonyl fluoride, p-APMSF

4-Amidinophenylmethanesulfonyl fluoride hydrochloride (p-APMSF) is a specific, irreversible inhibitor of the class of serine proteases with a substrate specificity for the positively charged side chains of lysine or arginine residues. p-APMSF specifically inhibits bovine Factor X_a, human plasmin, and the human complement proteases C1r and C1s. By contrast, it is much less inhibitory towards acetylcholinesterase and chymotrypsin.¹

p-APMSF has been shown to inhibit other enzymes, including a trypsin-like proteinase produced by *Fusarium culmorum*, the clotting enzyme flavoviridiobin from *Trimeresurus flavoviridis*, and an N(α)-acetylalanine aminopeptidase from *Allomyces arbuscula*.^{2,3,4} p-APMSF has been used in studies on nonproteasomal apoB100 degradative pathway in rat hepatoma cells.⁵ The use of p-APMSF in the inhibition of the proteolytic cleavage of apolipoprotein A-I by plasma phospholipid transfer protein has been studied.⁶

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.

Preparation Instructions

This product is soluble in DMSO (50 mg/ml), yielding a clear, colorless solution.

Storage/Stability

A stock solution of 50 mM p-APMSF in water can be prepared and is stable when aliquoted at -20 °C. Effective working concentrations are from 10-100 µM. The half-life of p-APMSF in aqueous buffer solutions at pH 7.0 is 6 minutes.⁷

References

1. Laura, R., et al., (p-amidinophenyl)methanesulfonyl fluoride, an irreversible inhibitor of serine proteases. *Biochemistry*, **19(21)**, 4859-4864 (1980).
2. Pekkarinen, A. I., and Jones, B. L., Trypsin-like proteinase produced by *Fusarium culmorum* grown on grain proteins. *J. Agric. Food Chem.*, **50(13)**, 3849-3855 (2002).
3. Tatematsu, R., et al., A new thrombin-like enzyme, flavoviridiobin from the venom of *Trimeresurus flavoviridis* (habu). *J. Nat. Toxins*, **9(4)**, 327-339 (2000).
4. Beti, R., et al., A novel N(α)-acetyl alanine aminopeptidase from *Allomyces arbuscula*. *Biochimie*, **84(4)**, 309-319 (2002).
5. Cardozo, C., et al., The inhibition of microsomal triglyceride transfer protein activity in rat hepatoma cells promotes proteasomal and nonproteasomal degradation of apoprotein b100. *Biochemistry*, **41(31)**, 10105-10114 (2002).
6. Jauhainen, M., et al., Phospholipid transfer protein (PLTP) causes proteolytic cleavage of apolipoprotein A-I. *J. Lipid Res.*, **40(4)**, 654-664 (1999).
7. Proteolytic Enzymes, A Practical Approach, 2nd ed., Beynon, R. J., and Bond, J. S., eds., IRL Press (Oxford, UK: 1989), p. 242.

GCY/RXR 2/03

Sigma brand products are sold through Sigma-Aldrich, Inc.

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip.