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Custom Oligos Modifications

These are some of the modifications that we offer for oligonucleotides. If you do not see the one that you require,
please send a feasibility request to oligotechserv@merckgroup.com.
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Fluorescent

Reporter Dyes

Fluorescent

Positions

Excitation

Maximum (nm)

Emission
Maximum (nm)

Fluorescent Color

6-FAM™ (fluorescein)

ROX™
Cyanine 3

Cyanine 5

Cyanine 5.5

6-FAM dT

HEX™

JOE™

6-Carboxy-rhodamine 6G™
TAMRA

TAMRA NHS Ester

TET™

TxRd (Sulforhodamine 101-X)

A488 (Sulfonated Fluorescein 488)

5' End, 3' End
5'End, 3' End
5' End, 3' End
5'End, 3' End
5' End
5' End, Internal
5' End
5'End, 3' End
5' End, 3' End
3' End
5'End
5' End
5'End, 3' End
5' End, 3' End

495
586

549

646
675
495
535
529
524
557
557
521
597
495

520
610

566

669
694
520
556
555
550
583
583
536
616
519

Green

Orange
Green-Yellow

Red

Red

Green

Green

Green

Green
Green-Yellow
Yellow

Green
Red-Orange

Green



Attachment

Amino Modifiers

Amino modifiers are used for attaching ligands to oligonucleotides and linking oligonucleotides to solid surfaces. 5’-
Amino-dT is used for attaching a peptide or PNA sequence to an oligonucleotide. Amino modifiers can sometimes be
used interchangeably with thiols.

5’-DMS(O)MT-Amino-Modifier-C6 (DMS(O)MT protecting group on amine)

Structure
O
HN A~~~
o—F|>—o—3'
o
Availability
Positions Scales (pmol) Purifications
5’ End 0.05, 0.2, 1.0 Cartridge, HPLC

5’-Amino-Modifier-C3-TFA (trifluoroacetic acid protecting group on amine)

Structure
|C|)
HzN/\/\O_||D —0—z3
o
Availability
Positions Scales (pmol) Purifications
5’ End 0.05, 0.2, 1.0 Desalt, HPLC
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5’-Amino-Modifier-C12

Structure
O
szd\\\////\\\\////\\\\////\\\\////\\\\////\\\\////\\\ ”
o—||°—o—3'
o
Availability
Positions Scales (pmol) Purifications
5’ End 0.05,0.2,1.0 Cartridge, HPLC

5’-Amino-Modifier-C6-TFA (trifluoroacetic acid protecting group on amine)

Structure
O
O—IT—O—B'
o
Availability
Positions Scales (pmol) Purifications
5’ End 0.05,0.2, 1.0 Desalt, PAGE




5’-Amino-dT

Purifications

Cartridge, HPLC

Structure
@)
HN |
O)\N
HoN
2 o
I
o=||3—0'
0]
\3.
Availability
Positions Scales (pmol)
5’ End 0.05, 0.2, 1.0
5’-Amino-Modifier-5
Structure
I
HZN\/\ /\/O—P—O—3'
0 |
@)
Availability
Positions Scales (pmol)
5’ End 0.05, 0.2, 1.0

Purifications

Cartridge, HPLC




Amino-Modifier-C2-dT

Structure
(6] (6]
NH»
HN X NN
)\ | "
(0] N
5'\
(0]
o
I
O=T—O
(0]
\3.
Availability
Positions Scales (pmol) Purifications
Internal 0.05,0.2, 1.0 Desalt, Cartridge, HPLC, PAGE

Amino-Modifier-C6-dT

Structure
(0] (e}
N /\/\/\/NHZ
HN N
| H
, O N
5 \O
O
1
O=I|3—O
(0]
\3,
Availability
Positions Scales (pmol) Purifications
Internal 0.05,0.2,1.0 Desalt, Cartridge, HPLC, PAGE




3’-Amino-Modifier-C7-CPG

Structure
HoN
o—¥5
O—Succinyl—LCAA—CPG
Availability
Positions Scales (pmol) Purifications
3’ End 0.05, 0.2, 1.0 Desalt, Cartridge, HPLC, PAGE
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3’-Glyceryl

3’-glyceryl produces a 3'-phosphoglyceryl terminus, which can then be oxidized to either the aldehyde or carboxylic
acid. Either oxidation state can be conjugated to molecules with amino functional groups.

Structure
OH
o\)\/O—Succinyl—LCAA—CPG
e
5
Availability
Positions Scales (pmol) Purifications
3’ End 0.05, 0.2, 1.0 Desalt, Cartridge, HPLC, PAGE
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Phosphate

5’-Phosphate and 5’-Phosphate 11

5’-phosphate is used for ligations, as a linker and adaptor, and to facilitate cellular uptake of oligonucleotides. It can
only be purified by desalt and PAGE, whereas 5’-phosphate II can undergo cartridge and RP-HPLC purifications.

Structure
C|)_
'O—I|:|>—3'
@)
Availability
Positions Scales (pmol) Purifications
5 End 0.05,0.2, 1.0 Desalt, PAGE (Phosphate) & Cartridge,

HPLC (Phosphate II)

3’-Phosphate

3’-phosphate is used to inhibit DNA polymerases and ligases as well as alter susceptibility to exonucleases. It is also
sometimes required when certain 3’ quenchers are conjugated to probes.

Structure

O

5'—P—0O—Succinyl—LCAA—CPG

O
Availability
Positions Scales (pmol) Purifications
3’ End 0.05, 0.2, 1.0 Desalt, Cartridge, HPLC, PAGE
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Thiol

5'-Thiol-Modifier C6 S-S

Thiol C6 S-S is used for attaching ligands to oligonucleotides and linking oligonucleotides to solid surfaces. Thiols are
shipped in oxidized form and must be reduced with DTT before being used in coupling reactions. Thiols can sometimes
be used interchangeably with amino modifiers.

Structures

Oxidized

i
5'_0\/\/\/\ S
-~ \/\/\/\
S o—F|>—3-
o
Reduced
O
HS\/\/\/\ “
o—F|>—3'
O
Availability
Positions Scales (pmol) Purifications
5’ End, Internal 0.05, 0.2, 1.0 Cartridge, HPLC
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3'-Thiol-Modifier-C3 S-S

3’-thiol-modifier C3 is used for attaching ligands to oligonucleotides and linking oligonucleotides to solid surfaces. It is
shipped in oxidized form and must be reduced with DTT before use in coupling reactions. Thiols can sometimes be
used interchangeably with amino modifiers.

Structures

Oxidized

5'\0/\/\8/S\/\/Succinyl—LCAA—CPG

Reduced

5" /\/\
\O SH

Availability
Positions Scales (pmol) Purifications

3’ End 0.05, 0.2, 1.0 Desalt, Cartridge, HPLC, PAGE
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Binding

Biotin and its binding partner streptavidin are used in various hybridization assays (e.g. blots, arrays, and ELISA) and
diagnostics. Streptavidin is often conjugated to alkaline phosphatase or horseradish peroxidase, which report a
reaction via chemiluminescence.

Biotin
5’-Biotin
Structure

O

N)kNH
H O
s o—||3—o—3'
O o

Availability
Positions Scales (pmol) Purifications

H

5’ End 0.05, 0.2, 1.0 Desalt, Cartridge, HPLC, PAGE

Biotin

Structure

@)

N)kNH
H
N
S 0—-5'
o)
i

0=P—0—3

H

o
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Availability

Positions Scales (pmol) Purifications
Internal 0.05,0.2,1.0 HPLC, PAGE
Biotin-dT
Structure
)(L
HN NH
O O
H
N
O N N\
HN ~ N S
| H
O
, (6] N
(0]
I
O=I|3—O'
(@)
\3.
Availability
Positions Scales (pmol) Purifications
5’ End, Internal 0.05,0.2, 1.0 HPLC, PAGE
Biotin-TEG
Structure
j.J\
HN NH
H
N\/\/O ©
5 \/\O/\/ \/\O 0—5'
O
I
O=T—O—3'
o
Availability

Positions Scales (pmol) Purifications

5’ End, Internal 0.05,0.2,1.0 Cartridge, HPLC
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3'-Biotin-TEG-CPG

Structure
O
HN)kNH
H
N\/\/O ©
S \/\O/\/ \/\O 0—5'
(0]
Succinyl
I
LCAA
CPG
Availability
Positions Scales (pmol) Purifications
3’ End, Internal 0.05, 0.2, 1.0 HPLC, PAGE
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Digoxigenin

Digoxigenin and anti-digoxigenin antibodies substitute for biotin and streptavidin in various hybridization assays (e.g.
blots, arrays, and ELISA) and diagnostics. Anti-digoxigenin or secondary antibodies are typically conjugated to
reporters such as alkaline phosphatase, horseradish peroxidase, fluorescein, rhodamine, or colloidal gold.

nel

| Hd@

Structure

(@)

L

T

H
0]
Availability
Positions Scales (pmol) Purifications
5’ End, 3’ End 0.05, 0.2, 1.0 HPLC
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2,4-Dinitrophenol-TEG

DNP and anti-DNP antibodies substitute for biotin and streptavidin in various hybridization assays (e.g. blots, arrays,
and ELISA) and diagnostics. Anti-DNP or secondary antibodies are typically conjugated to alkaline phosphatase or
horseradish peroxidase, which report a reaction via chemiluminescence.

Structure

H
G N e O\/\O/ﬁ/\o_s

NO, 0
O—P—0—3'
o
Availability
Positions Scales (pmol) Purifications
5’ End, Internal 0.05, 0.2, 1.0 HPLC
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Spacers

Spacers are used for investigating duplex formation, creating distance between an oligonucleotide and a conjugated
modification, and inhibiting polymerases, topoisomerases, and exonucleases. Multiple additions may be made when
longer spacers are necessary.

Structures
Spacer 9
@) @) m
5 \/\O/\/ \/\O—P—3'
o
Spacer 12
I
O
W \/\/\/\/\/\/\
5 o—F|>—3'
o
Spacer 18
. O
S \O/\/OV\O/\/OV\O/\/OV\O_H_Q
|
o
Spacer C3
5 I
AT NN
O o—||3—3'
o
Availability
Positions Scales (pmol) Purifications
5’ End, Internal 0.05, 0.2, 1.0 Desalt, Cartridge, HPLC, PAGE
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3’-Spacer-C3-CPG
3’-Spacer C3 is used to inhibit DNA polymerases and exonucleases.
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Analog

Chain Terminating

3’-dA, -dC, -dG, and -dT are used to inhibit DNA polymerases and topoisomerases.
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3'-dC-CPG
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Chemotherapeutic

Cytosine arabinoside (Ara-C, Cytarabine)

Ara-C is a chemotherapeutic agent that inhibits DNA replication, decreases binding of transcription factors, and
induces cleavage by topoisomerases and endonucleases. Ara-C is also used in a PCR-based, restriction-enzyme-free
splicing and mutagenesis protocol.
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2’,3’-Dideoxycytidine (ddC, Zalcitabine)

2’,3’-dideoxycytidine (ddC) is a reverse transcriptase inhibitor that blocks HIV replication.
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Contamination Prevention

Ribo U

Ribo U prevents cross contamination of PCR-amplified sequences.
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Crosslinking

Halogenated Bases

Halogenated nucleosides are used to crosslink oligonucleotides to DNA, RNA, and proteins. They are also used to
investigate structures via x-ray diffraction and NMR.
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Damage and Repair

2’-Deoxypseudouridine

2’-deoxypseudouridine is used to investigate the function of uracil-DNA glycosylase and the mechanisms of DNA
damage and repair. It is also used to study triple-helix motifs.
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Dihydro Bases

5,6-dihydro-dT and -dU are used to investigate DNA damage and repair. Both structures can form when thymine and
uracil are chemically altered by oxidation, free radicals, ultraviolet light, or ionizing radiation.
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Hydroxylated Bases

5-OH-dC and -dU are used to investigate DNA damage and repair. Both structures can form when cytosine and uracil
are chemically altered by oxidation, free radicals, ultraviolet light, or ionizing radiation.
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Oxo Bases

8-oxo-dA and -dG are used to investigate DNA damage and repair. Both structures can form when adenine and
guanine are chemically altered by oxidation, free radicals, ultraviolet light, or ionizing radiation. 8-oxo-dA is also used
to study triple-helix motifs.
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Thymidine Glycol

Thymidine glycol is used to investigate DNA damage and repair. It can form when thymine is chemically altered by
oxidation, free radicals, ultraviolet light, or ionizing radiation.
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TMP-F-dU

TMP-F-dU is used to introduce the difficult-to-synthesize F-dC into oligonucleotides. The conversion from F-dU to F-dC
occurs during deprotection with ammonia. F-dC influences DNA structure and inhibits methyltransferases.
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dUracil

dU substitutes for thymidine and is used to investigate DNA damage and repair. Cleavage of uracil-containing DNA
also has a practical application in that it can be used to prevent cross contamination of PCR-amplified sequences.
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Degenerate

2’-Deoxynebularine

2’-deoxynebularine functions as a degenerate nucleoside in primers and probes. It is also used to investigate the
function of DNA endonucleases and triple-helix motifs as well as develop electrochemical sensors.
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Derivative K (dK)

dK is used in mutagenesis studies and functions as a degenerate base in primers and probes. It is a purine derivative
and base pairs with deoxycytidine and thymidine.
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Derivative P (dP)

dP is used in mutagenesis studies and functions as a degenerate base in primers and probes. It is a pyrimidine
derivative and base pairs with deoxyadenosine and deoxyguanosine.
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Inosine

Inosine is used to investigate DNA damage and repair and functions as a degenerate nucleoside in primers and
probes. It base pairs in the following order of preference: deoxycytidine > deoxyadenosine > deoxyguanosine =
thymidine. The base of inosine is hypoxanthine.
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5-Nitroindole

5-nitroindole functions as a degenerate base in primers and probes. It does not hydrogen bond to native bases but
stabilizes the duplex through stacking interactions. Melting experiments have demonstrated that 5-nitroindole is
superior to 3-nitropyrrole.
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3-Nitropyrrole

3-nitropyrrole functions as a degenerate base in primers and probes. It does not hydrogen bond to native bases but
stabilizes the duplex through stacking interactions. Melting experiments have demonstrated that 3-nitropyrrole is
inferior to 5-nitroindole.
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Duplex Stabilizing

2,6-Diaminopurine (2-Amino-dA)

2,6-diaminopurine (DAP) enhances duplex stability by forming three hydrogen bonds with thymidine. It increases DNA
melting temperatures by up to 3°C per addition and therefore creates tighter binding primers and probes. DAP is also
used to investigate DNA curvature and the function of deoxyribozymes.
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5-Me-dC

5-Me-dC enhances duplex stability by elevating DNA melting temperatures 0.5-1.3°C per addition. When substituted
for deoxycytidine, it creates tighter binding primers and probes. 5-Me-dC is also used for investigating triple-helix
motifs.
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Fluorescent

2-Aminopurine

2-aminopurine is a fluorescent base that substitutes for adenine and guanine. It is a useful probe for investigating
DNA conformational changes, mutagenesis, and polymerase function.
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Etheno-dA

Etheno-dA is a fluorescent nucleoside used for studying DNA damage and repair. It will not base pair with thymidine
or uridine, therefore it must be located at the 5’ terminus of primers.
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Locked Nucleic Acid

Locked Nucleic Acid is a novel type of nucleic acid analog that contains a 2'-O, 4'-C methylene bridge. This bridge-
locked in the 3'-endo conformation-restricts the flexibility of the ribofuranose ring and locks the structure into a rigid
bicyclic formation. This confers enhanced assay performance and an increased breadth of applications, such as increased
thermal stability and hybridization specificity, more accurate gene quantification and allelic discrimination, and easier
and more flexible designs for problematic target sequences.
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Methylation Mutagenesis

N6-Me-dA

N6-Me-dA is used for investigating mutagenesis caused by methylation of exocyclic amines.
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06-Me-dG
06-Me-dG is used for investigating mutagenesis caused by methylation of exocyclic oxygens.
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04-Me-dT

04-Me-dT is used for investigating mutagenesis caused by methylation of exocyclic oxygens.
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No Base

dSpacer

dSpacer forms a stable abasic site. It is used to create FRET primers, study quadruplex structures, and investigate
DNA damage and repair mechanisms.
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SsiRNA Guide Strand Selection

5'-0-Me-dT

5’-0O-Me-dT controls guide strand selection and targeting specificity of siRNA duplexes as they are loaded into RISC
(RNA-induced silencing complex).
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Deaza Bases

The deaza and aza nucleosides are used to study DNA structure and function. 7-deaza-dA and 7-deaza-dG lack
nitrogens critical for hydrogen bond formation and thereby influence DNA bending. 7-deaza-dX has interesting effects
on triple-helix motifs and forms a non-standard base pair with 2,4-diaminopyrimidine. 7-deaza-8-aza-dA is slightly
stabilizing relative to dA.
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2’ 5> 5’ Synthesis

2’ > 5’ linked oligonucleotides selectively bind to RNA, making them useful as probes or antisense agents. They also
drive formation of triple-helix motifs.
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Puromycin

Puromycin is a potent prokaryotic and eukaryotic translation-termination antibiotic. It is best known for its ability to
direct the evolution of polypeptides via mRNA display. Puromycin can also be used to initiate ribosome-free peptide
synthesis and reveal ribosome structure and function.
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Intercalation

Acridine

Acridine is a fluorescent intercalating agent used to investigate DNA cleavage, mutagenesis, and triple-helix-motif
formation. It is also used to deliver antisense oligonucleotides and inhibit HIV integrase.
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Psoralen

Psoralen is an intercalating agent used for investigating DNA structure and function and DNA-protein interactions. It
forms either monoadducts or diadducts with DNA bases when exposed to 350 nm UV light. Exposure to 254 nm UV
light reverses the diadducts. C2 is for crosslinking to double-stranded DNA, and C6 is for crosslinking to triple-
stranded DNA.
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Antisense

Cholesterol’s lipophilic properties promote its uptake through the plasma membrane, thereby facilitating
delivery of oligonucleotides. It also has potential for initiating construction of nanotechnological structures
on the plasma membrane and developing in vivo biosensors.
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Methyl RNA

2’-OMe-nucleoside-containing oligonucleotides are resistant to a variety of nucleases and therefore are
used in antisense applications.
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Methoxyethyl RNA

2’-OMe-nucleoside-containing oligonucleotides are resistant to a variety of nucleases and therefore are used in
antisense applications.
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Fluoro RNA

Replacing the 2’-hydroxyl group in RNA with fluorine substantially increases its melting temperature, chemical
stability, and resistance to nucleases.
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Thiophosphate

Thiosphosphate is used to study how reverse transcriptases are affected by structural mutations in the nucleic acid
template.
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