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Custom Oligos Modifications 
 

These are some of the modifications that we offer for oligonucleotides. If you do not see the one that you require, 

please send a feasibility request to oligotechserv@merckgroup.com. 
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Fluorescent 

 

Reporter Dyes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fluorescent Positions 
Excitation 

Maximum (nm) 

Emission 

Maximum (nm) 
Fluorescent Color 

6-FAM™ (fluorescein) 5' End, 3' End 495 520 Green 

ROX™ 5' End, 3' End 586 610 Orange 

Cyanine 3 5' End, 3' End 549 566 Green-Yellow 

Cyanine 5 5' End, 3' End 646 669 Red 

Cyanine 5.5 5' End 675 694 Red 

6-FAM dT 5' End, Internal 495 520 Green 

HEX™ 5' End 535 556 Green 

JOE™ 5' End, 3' End 529 555 Green 

6-Carboxy-rhodamine 6G™ 5' End, 3' End 524 550 Green 

TAMRA 3' End 557 583 Green-Yellow 

TAMRA NHS Ester 5' End 557 583 Yellow 

TET™ 5' End 521 536 Green 

TxRd (Sulforhodamine 101-X) 5' End, 3' End 597 616 Red-Orange 

A488 (Sulfonated Fluorescein 488) 5' End, 3' End 495 519 Green 
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Attachment 

 

Amino Modifiers 
 

Amino modifiers are used for attaching ligands to oligonucleotides and linking oligonucleotides to solid surfaces. 5′-
Amino-dT is used for attaching a peptide or PNA sequence to an oligonucleotide. Amino modifiers can sometimes be 

used interchangeably with thiols. 

 

5′-DMS(O)MT-Amino-Modifier-C6 (DMS(O)MT protecting group on amine) 

 

Structure 

 

 

Availability 

 

 

 

5′-Amino-Modifier-C3-TFA (trifluoroacetic acid protecting group on amine) 

 

Structure 

 

 

Availability 

 

 

 

 

 

 

 

 

 

 

 

 

Positions Scales (μmol) Purifications 

5′ End 0.05, 0.2, 1.0 Cartridge, HPLC 

Positions Scales (μmol) Purifications 

5′ End 0.05, 0.2, 1.0 Desalt, HPLC 
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5′-Amino-Modifier-C12 

 

Structure 

 

 

 

Availability 

 

 

 

5′-Amino-Modifier-C6-TFA (trifluoroacetic acid protecting group on amine) 

 

Structure 

 

 

Availability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Positions Scales (μmol) Purifications 

5′ End 0.05, 0.2, 1.0 Cartridge, HPLC 

   

Positions Scales (μmol) Purifications 

5′ End 0.05, 0.2, 1.0 Desalt, PAGE 
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5′-Amino-dT 

 

Structure 

 

 

Availability 

 

 

 

5′-Amino-Modifier-5 

 

Structure 

 

 

 

Availability 

 

 

 

 

 

 

 

 

 

 

Positions Scales (μmol) Purifications 

5′ End 0.05, 0.2, 1.0 Cartridge, HPLC 

Positions Scales (μmol) Purifications 

5′ End 0.05, 0.2, 1.0 Cartridge, HPLC 
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Amino-Modifier-C2-dT 

 

Structure 

 

 

Availability 

 

 

 

Amino-Modifier-C6-dT 

 

Structure 

 

 

Availability 

 

 

 

 

Positions Scales (μmol) Purifications 

Internal 0.05, 0.2, 1.0 Desalt, Cartridge, HPLC, PAGE 

Positions Scales (μmol) Purifications 

Internal 0.05, 0.2, 1.0 Desalt, Cartridge, HPLC, PAGE 

O

O

PO O
-

O

O

3'

HN

NO

O

5'

N
H

NH2

O

O

O

PO O
-

O

O

3'

HN

NO

O

5'

N
H

O

NH2



 

 

10 

 

3′-Amino-Modifier-C7-CPG 

 
Structure 

 

 

Availability 
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Positions Scales (μmol) Purifications 

3′ End 0.05, 0.2, 1.0 Desalt, Cartridge, HPLC, PAGE 
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3′-Glyceryl 
 

3′-glyceryl produces a 3'-phosphoglyceryl terminus, which can then be oxidized to either the aldehyde or carboxylic 

acid. Either oxidation state can be conjugated to molecules with amino functional groups.  

 

Structure 

 

 

Availability 
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Positions Scales (μmol) Purifications 

3′ End 0.05, 0.2, 1.0 Desalt, Cartridge, HPLC, PAGE 

OH
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Phosphate 
 

5′-Phosphate and 5′-Phosphate II 

 

5′-phosphate is used for ligations, as a linker and adaptor, and to facilitate cellular uptake of oligonucleotides. It can 
only be purified by desalt and PAGE, whereas 5′-phosphate II can undergo cartridge and RP-HPLC purifications. 
 

Structure 

 

Availability 

 

 

 

 

3′-Phosphate 

 

3’-phosphate is used to inhibit DNA polymerases and ligases as well as alter susceptibility to exonucleases. It is also 
sometimes required when certain 3’ quenchers are conjugated to probes. 
 

Structure 

 

Availability 
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Positions Scales (μmol) Purifications 
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Thiol 

 

5'-Thiol-Modifier C6 S-S 

 

Thiol C6 S-S is used for attaching ligands to oligonucleotides and linking oligonucleotides to solid surfaces. Thiols are 
shipped in oxidized form and must be reduced with DTT before being used in coupling reactions. Thiols can sometimes 
be used interchangeably with amino modifiers. 
 

Structures 

 

Oxidized 

 

 

Reduced 

 

 

 

Availability 
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Positions Scales (μmol) Purifications 
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15 

 

Ferenc G, Kupihár Z, Kele Z, and Kovács L. 

A convenient method for the synthesis of oligonucleotide-cationic peptide conjugates. 
Nucleosides Nucleotides Nucleic Acids. 2005;24(5-7):1059-61. 
 

Adessi C, Matton G, Ayala G, Turcatti G, Mermod JJ, Mayer P, and Kawashima E. 
Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. 
Nucleic Acids Res. 2000 Oct 15;28(20):E87. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

16 

 

3'-Thiol-Modifier-C3 S-S 

 

3′-thiol-modifier C3 is used for attaching ligands to oligonucleotides and linking oligonucleotides to solid surfaces. It is 

shipped in oxidized form and must be reduced with DTT before use in coupling reactions. Thiols can sometimes be 
used interchangeably with amino modifiers. 

 

Structures 

 

Oxidized 

 

 

 

 

Reduced 

 

 

 

 

Availability 
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Positions Scales (μmol) Purifications 

3′ End 0.05, 0.2, 1.0 Desalt, Cartridge, HPLC, PAGE 
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Binding 

 

Biotin and its binding partner streptavidin are used in various hybridization assays (e.g. blots, arrays, and ELISA) and 
diagnostics. Streptavidin is often conjugated to alkaline phosphatase or horseradish peroxidase, which report a 
reaction via chemiluminescence. 

 

Biotin 
 

5′-Biotin 

 

Structure 

 

 

Availability 

 

 

Biotin 

 

Structure 

 

 

 

 

 

Positions Scales (μmol) Purifications 

5′ End 0.05, 0.2, 1.0 Desalt, Cartridge, HPLC, PAGE 
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Availability 

 

 

Biotin-dT 

 

Structure 

 

 

Availability 

 

 

Biotin-TEG 

 

Structure 

 

 

Availability 

 

 

 

Positions Scales (μmol) Purifications 

Internal 0.05, 0.2, 1.0 HPLC, PAGE 

Positions Scales (μmol) Purifications 

5′ End, Internal 0.05, 0.2, 1.0 HPLC, PAGE 

Positions Scales (μmol) Purifications 

5′ End, Internal 0.05, 0.2, 1.0 Cartridge, HPLC 
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3′-Biotin-TEG-CPG 

 

Structure 

 

 

Availability 
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Digoxigenin 
 

Digoxigenin and anti-digoxigenin antibodies substitute for biotin and streptavidin in various hybridization assays (e.g. 
blots, arrays, and ELISA) and diagnostics. Anti-digoxigenin or secondary antibodies are typically conjugated to 
reporters such as alkaline phosphatase, horseradish peroxidase, fluorescein, rhodamine, or colloidal gold. 
 

Structure 

 

 

Availability 
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2,4-Dinitrophenol-TEG 
 

DNP and anti-DNP antibodies substitute for biotin and streptavidin in various hybridization assays (e.g. blots, arrays, 
and ELISA) and diagnostics. Anti-DNP or secondary antibodies are typically conjugated to alkaline phosphatase or 
horseradish peroxidase, which report a reaction via chemiluminescence. 

 

Structure 

 

 

 

 

Availability 
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Spacers 

 

Spacers are used for investigating duplex formation, creating distance between an oligonucleotide and a conjugated 
modification, and inhibiting polymerases, topoisomerases, and exonucleases. Multiple additions may be made when 
longer spacers are necessary. 
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3′-Spacer-C3-CPG 
 

3′-Spacer C3 is used to inhibit DNA polymerases and exonucleases. 
 

Structure 

 

 

Availability 
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Analog  

 

Chain Terminating 
 

3′-dA, -dC, -dG, and -dT are used to inhibit DNA polymerases and topoisomerases. 
 

Structures 

 

3′-dA-CPG (Cordycepin) 

 

 

 

3′-dG-CPG 

 

 

 

O

Succinyl

O

N

N
N

N

5'

NH2

LCAA

CPG

O

Succinyl

O

N

N
HN

N

5'

H2N

O

LCAA

CPG



 

 

26 

 

3′-dC-CPG 

 

 

 

3′-dT-CPG 
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Chemotherapeutic 
 

Cytosine arabinoside (Ara-C, Cytarabine) 

 

Ara-C is a chemotherapeutic agent that inhibits DNA replication, decreases binding of transcription factors, and 
induces cleavage by topoisomerases and endonucleases. Ara-C is also used in a PCR-based, restriction-enzyme-free 
splicing and mutagenesis protocol. 
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2′,3′-Dideoxycytidine (ddC, Zalcitabine) 

 

2′,3′-dideoxycytidine (ddC) is a reverse transcriptase inhibitor that blocks HIV replication. 
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Contamination Prevention 
 

Ribo U 

 

Ribo U prevents cross contamination of PCR-amplified sequences. 
 

Structure 
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Crosslinking 
 

Halogenated Bases 

 

Halogenated nucleosides are used to crosslink oligonucleotides to DNA, RNA, and proteins. They are also used to 
investigate structures via x-ray diffraction and NMR. 
 

Structures 
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5-Br-dC 
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5-F-dU 
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5-I-dU 
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Damage and Repair 
 

2′-Deoxypseudouridine 

 

2′-deoxypseudouridine is used to investigate the function of uracil-DNA glycosylase and the mechanisms of DNA 
damage and repair. It is also used to study triple-helix motifs. 
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Dihydro Bases 
 

5,6-dihydro-dT and -dU are used to investigate DNA damage and repair. Both structures can form when thymine and 
uracil are chemically altered by oxidation, free radicals, ultraviolet light, or ionizing radiation. 
 

Structures 
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Hydroxylated Bases 
 

5-OH-dC and -dU are used to investigate DNA damage and repair. Both structures can form when cytosine and uracil 
are chemically altered by oxidation, free radicals, ultraviolet light, or ionizing radiation. 
 

Structures 
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Oxo Bases 
 

8-oxo-dA and -dG are used to investigate DNA damage and repair. Both structures can form when adenine and 
guanine are chemically altered by oxidation, free radicals, ultraviolet light, or ionizing radiation. 8-oxo-dA is also used 
to study triple-helix motifs. 
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Thymidine Glycol 
 

Thymidine glycol is used to investigate DNA damage and repair. It can form when thymine is chemically altered by 
oxidation, free radicals, ultraviolet light, or ionizing radiation. 
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TMP-F-dU 
 

TMP-F-dU is used to introduce the difficult-to-synthesize F-dC into oligonucleotides. The conversion from F-dU to F-dC 
occurs during deprotection with ammonia. F-dC influences DNA structure and inhibits methyltransferases. 
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dUracil 
 

dU substitutes for thymidine and is used to investigate DNA damage and repair. Cleavage of uracil-containing DNA 
also has a practical application in that it can be used to prevent cross contamination of PCR-amplified sequences. 
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Degenerate 
 

2′-Deoxynebularine 

 

2′-deoxynebularine functions as a degenerate nucleoside in primers and probes. It is also used to investigate the 
function of DNA endonucleases and triple-helix motifs as well as develop electrochemical sensors. 
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Derivative K (dK) 

 

dK is used in mutagenesis studies and functions as a degenerate base in primers and probes. It is a purine derivative 

and base pairs with deoxycytidine and thymidine. 
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Derivative P (dP) 

 

dP is used in mutagenesis studies and functions as a degenerate base in primers and probes. It is a pyrimidine 

derivative and base pairs with deoxyadenosine and deoxyguanosine. 
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Inosine 

 

Inosine is used to investigate DNA damage and repair and functions as a degenerate nucleoside in primers and 

probes. It base pairs in the following order of preference: deoxycytidine > deoxyadenosine > deoxyguanosine = 
thymidine. The base of inosine is hypoxanthine. 
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5-Nitroindole 

 

5-nitroindole functions as a degenerate base in primers and probes. It does not hydrogen bond to native bases but 

stabilizes the duplex through stacking interactions. Melting experiments have demonstrated that 5-nitroindole is 
superior to 3-nitropyrrole. 
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3-Nitropyrrole 

 

3-nitropyrrole functions as a degenerate base in primers and probes. It does not hydrogen bond to native bases but 

stabilizes the duplex through stacking interactions. Melting experiments have demonstrated that 3-nitropyrrole is 
inferior to 5-nitroindole. 
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Duplex Stabilizing 
 

2,6-Diaminopurine (2-Amino-dA) 

 

2,6-diaminopurine (DAP) enhances duplex stability by forming three hydrogen bonds with thymidine. It increases DNA 
melting temperatures by up to 3ºC per addition and therefore creates tighter binding primers and probes. DAP is also 
used to investigate DNA curvature and the function of deoxyribozymes. 
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5-Me-dC 

 

5-Me-dC enhances duplex stability by elevating DNA melting temperatures 0.5–1.3ºC per addition. When substituted 

for deoxycytidine, it creates tighter binding primers and probes. 5-Me-dC is also used for investigating triple-helix 
motifs. 
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Fluorescent 
 

2-Aminopurine 

 

2-aminopurine is a fluorescent base that substitutes for adenine and guanine. It is a useful probe for investigating 
DNA conformational changes, mutagenesis, and polymerase function. 
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Etheno-dA 

 

Etheno-dA is a fluorescent nucleoside used for studying DNA damage and repair. It will not base pair with thymidine 

or uridine, therefore it must be located at the 5′ terminus of primers. 
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Locked Nucleic Acid 
 

Locked Nucleic Acid is a novel type of nucleic acid analog that contains a 2'-O, 4'-C methylene bridge. This bridge–
locked in the 3'-endo conformation–restricts the flexibility of the ribofuranose ring and locks the structure into a rigid 
bicyclic formation. This confers enhanced assay performance and an increased breadth of applications, such as increased 
thermal stability and hybridization specificity, more accurate gene quantification and allelic discrimination, and easier 
and more flexible designs for problematic target sequences. 
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Locked C 

 

 
 

 

Locked T 
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Methylation Mutagenesis 
 

N6-Me-dA 

 

N6-Me-dA is used for investigating mutagenesis caused by methylation of exocyclic amines. 
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O6-Me-dG 

 

O6-Me-dG is used for investigating mutagenesis caused by methylation of exocyclic oxygens. 
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O4-Me-dT 

 

O4-Me-dT is used for investigating mutagenesis caused by methylation of exocyclic oxygens. 
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No Base 
 

dSpacer 

 

dSpacer forms a stable abasic site. It is used to create FRET primers, study quadruplex structures, and investigate 
DNA damage and repair mechanisms. 
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siRNA Guide Strand Selection 
 

5′-O-Me-dT 

 

5′-O-Me-dT controls guide strand selection and targeting specificity of siRNA duplexes as they are loaded into RISC 
(RNA-induced silencing complex). 
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Deaza Bases 
 

The deaza and aza nucleosides are used to study DNA structure and function. 7-deaza-dA and 7-deaza-dG lack 
nitrogens critical for hydrogen bond formation and thereby influence DNA bending. 7-deaza-dX has interesting effects 
on triple-helix motifs and forms a non-standard base pair with 2,4-diaminopyrimidine. 7-deaza-8-aza-dA is slightly 
stabilizing relative to dA. 
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7-Deaza-dX 

 

 

 

7-Deaza-8-Aza-dA 
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2′ → 5′ Synthesis 
 

2′ → 5′ linked oligonucleotides selectively bind to RNA, making them useful as probes or antisense agents. They also 
drive formation of triple-helix motifs. 
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dC-5′ 

 

 

 

dT-5′ 
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Puromycin 
 

Puromycin is a potent prokaryotic and eukaryotic translation-termination antibiotic. It is best known for its ability to 
direct the evolution of polypeptides via mRNA display. Puromycin can also be used to initiate ribosome-free peptide 
synthesis and reveal ribosome structure and function. 
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Intercalation 

 

Acridine 
 

Acridine is a fluorescent intercalating agent used to investigate DNA cleavage, mutagenesis, and triple-helix-motif 
formation. It is also used to deliver antisense oligonucleotides and inhibit HIV integrase. 
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Psoralen 
 

Psoralen is an intercalating agent used for investigating DNA structure and function and DNA-protein interactions. It 
forms either monoadducts or diadducts with DNA bases when exposed to 350 nm UV light. Exposure to 254 nm UV 
light reverses the diadducts. C2 is for crosslinking to double-stranded DNA, and C6 is for crosslinking to triple-
stranded DNA. 
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Antisense 

 

Cholesterol’s lipophilic properties promote its uptake through the plasma membrane, thereby facilitating 

delivery of oligonucleotides. It also has potential for initiating construction of nanotechnological structures 

on the plasma membrane and developing in vivo biosensors.  
 

Cholesteryl-TEG 
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Methyl RNA 
 

2′-OMe-nucleoside-containing oligonucleotides are resistant to a variety of nucleases and therefore are 

used in antisense applications. 
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2′-OMe-RNA-C 

 

 

 

2′-OMe-RNA-U 
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Methoxyethyl RNA 
 

2′-OMe-nucleoside-containing oligonucleotides are resistant to a variety of nucleases and therefore are used in 
antisense applications. 
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2′-MOE-RNA-C 

 

 

 

2′-MOE-RNA-meU 
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Fluoro RNA 
 

Replacing the 2′-hydroxyl group in RNA with fluorine substantially increases its melting temperature, chemical 
stability, and resistance to nucleases. 
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Thiophosphate 
 

Thiosphosphate is used to study how reverse transcriptases are affected by structural mutations in the nucleic acid 
template. 
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