3D-Printable Hydrogel-Based & Particle-Based Ink Platforms

Ramille N. Shah, PhD

Assistant Professor

Adam E. Jakus, PhD

Hartwell Postdoctoral Fellow

 $--\frac{1}{2}$ Materials Science and Engineering Surgery (Organ Transplant Division) Shah TEAM (Tissue Engineering and Additive Manufacturing) Lab Simpson Querrey Institute for BioNanotechnology Northwestern University, Chicago, IL

 -1.11 , -1.11 ,

Millipore Sigma Webinar *Online* **Originally Presented on June 12, 2017**

Prof. Ramille Shah and Dr. Adam Jakus are co-founders of and have financial interests in *Dimension Inx, LLC*, which could potentially benefit from the outcomes of the research and technologies displayed in the following slides.

Fused Deposition Modeling: Material Deposition 3D-Printing

Molten plastic (or lightly loaded plastic composite) is extruded and solidifies upon deposition due to temperature reduction

Energy Beams for Metal Additive Manufacturing

Pratt and Whitney

Resin Baths for Photopolymer Additive Manufacturing

Copyright @ 2008 CustomPartNet

Light selectively polymerizes/cross-links/cures regions of monomer resin bath resulting in selective solidification

Inkjet Binding: Powder Bed + Material Deposition

Been in use for ~30 years

C.B. Williams *et al. Int J Adv Manuf Technol***. 53, 2011**

Room-Temp. Material Deposition: Direct Ink Writing ("Robocasting") a

Extruded "Ink" that contains powder and binder and is selfsupporting upon deposition. Generally requires post-AM chemical or thermal processing

Traditional DIW formulations have been limited to < 40 vol.% powder (typically less than 25 vol.%) → Post-processing difficult

Equipment Materials/Consumables

Two Printer Technologies (inkjet & Laserjet)

Every Color

Dozens of technologies and platforms

SHAH

Stratasys

EnvisionTEC

One Machine \rightarrow Very Few Materials

The current specialty of 3DP and AM

Material

Where the most progress is needed And where the most confusion resides

Functionality

It looks like a burger (shape), but the plastic (material) doesn't taste like a burger (function)!

Huffpost.com

Shape alone ≠ Function

Kidney *shaped***, but not a** *functional* **kidney**

3D-Printing a Human Kidney TED Talk: March, 2011

Shaped like organs and tissues, but the *material* **is not** *functional*

ΗАΗ

The Shah Tissue Engineering and Additive Manufacturing Laboratory

Defining "3D-Printability" and creating and developing new, 3D-printable materials for any and all applications.

INCREASING: Functionality, Complexity, Regulations, Standards, Etc.

Creating Complex and Versatile 3D Printed Functional Implants

Tissues and organs widely vary in composition, structure, properties, and function.

The Biomaterial Ink Palette 3D-Printable Inks

3D-Printing Compatibility

> Extrude through fine diameter nozzles

Continuous, uniform filament extrusion

Self-supporting and shapemaintaining

Compatible with other inks

"Advancing the Field of 3D Biomaterial Printing" A. Jakus & A. Rutz, R.N. Shah. *Biomedical Materials***; 11(1)** *Special Edition. 2016*

Partially Cross-Linked Hydrogel Inks

Aqueous-Based, Primarily Water Hydrophilic Multi-Mat. Compatible Can Encapsulate Live Cells (Bioprinting)

Particle-Laden Inks *"3D-Painting"*

Well beyond biological and medical applications

Organic Solvent-Based Primarily Rigid Particles Multi-Mat. Compatible Can't Encapsulate Live Cells

Solution vs. Gel Phase 3D Printing

- Limited multi-layer fabrication
- Cell settling in the ink (inhomogeneous distribution)

Shah TEAM Lab Approach **Partially Cross-Linked Hydrogels**

 $2nd$ layer

Developing a Universal Bioink Method: PEGX

Rutz, Shah et al. *Advanced Materials,* 27(9), **2015**

Base Polymer:

e.g. Amine -containing

PEG Cross-linker:

e.g. Homobifunctional NHS (amine-reactive)

Advantages to PEG:

- *biocompatible*
- *variations in physical and chemical prop. easily accessible*
- *commercially available*
- *inexpensive*

3D Printed PEGX-Gelatin

Multi-Material Printing and Cell Patterning

Rutz, Shah et al. *Advanced Materials,* 27(9), **2015**

Customizing Nanostructure and Bioactivity

Rutz, Shah et al. *Advanced Materials,* 27(9), **2015**

An Expansive Variety of Soft Material Properties

- ➢ *Over 100 formulations from a variety of materials - natural and synthetic*
- ➢ *Can customize 3D printed material composition, bioactivity, nanostructure, degradation, & mechanical properties - without compromising printability*
- ➢ *Achieve 3D printable hydrogel constructs over a range of 500Pa – 40kPa*

Enhancing Bioactivity w/ Tissue Specific Decellularized ECM

Cholangiocytes: biliary epithelial cells

Type 1 Collagen Matrigel Matrigel Liver dECM

Day 7

Engineering a Bioprosthetic Ovary: Addressing Gonadotoxicity or Gonadal Dysfunction

E Significant correlation between radiation therapy and infertility, acute ovarian failure, and low hormone levels in female cancer survivors

Our Solution:

Isolate and culture follicles from patient before treatment in a Bioprosthetic Ovary and implant back into patient after treatment to preserve fertility and hormone function

Prof. Teresa Woodruff, Dr. Monica Laronda, Dr. Shuo Xiao, Kelly Whelan

Effect of Pore Geometry on Follicle Survival

Increasing number of contacts decreases follicle spreading and maintains spherical shape necessary for survival

GFP+ Follicle-Seeded 3D Printed Scaffold Implantation

1. Ovarian tissue is removed

2. Bioprosthetic ovary implanted

Bioprosthetic Ovary = GFP+ follicles on 3D printed gelatin scaffold

Folliculogenesis & Hormone Production Restored

§, scaffold strut. **+**, vessels.

Fertility Restoration: In Vivo Live Birth and Lactation

Successful live birth of GFP+ offspring

Pups raised by mom until weening; mom lactated and was hormonally functional

Bioprosthesis-Derived Grandpups

Pup grew to adulthood, was mated and had pups – had normal fertility

First demonstration of a functional implanted organ created via 3D printing

In the midst of setting up a 3D printing center within hospital GMP facility to produce 3D printed hydrogel scaffolds for future preclinical (porcine) & clinical trials

Shah TEAM Lab 3D Printable Ink Platforms

Partially Cross-Linked Hydrogel Inks

Aqueous-Based, Primarily Water Hydrophilic Multi-Mat. Compatible Can Encapsulate Live Cells (Bioprinting)

Particle-Laden Inks *"3D-Painting"*

Well beyond biological and medical applications

Organic Solvent-Based Primarily Rigid Particles Multi-Mat. Compatible Can't Encapsulate Live Cells

3D-PAINTING: A COMPREHENSIVE, MATERIALS-CENTRIC & approach to 3D-printing & Additive manufacturing

Not just different colors… Completely different materials!

A selection of more than 300 distinct 3D-Paints developed by the Shah TEAM Lab (...and can be infinitely mixed and modified)

It's really quite interesting!

(but terribly boring to watch dry)

Solvents slowly evaporate and we get a solid layer of "colored particles" embedded in polymer

 \Box

A solid two-dimensional layer **Inorganic** pigment

But this is a slow process…

"Frankly, I think watching paint dry has been given a bad press."
3D-Painting: Watching paint dry has never been so much fun!

Room-temperature deposition

Deposition rates up to 150 mm/s*

No powder beds or resin baths No Support materials required No curing or post-reactions to stabilize structures

> **Objects can be handled immediately**

One to thousands of layers

100 µm to 1.4 cm fiber diameter**

* Maximum speed of the hardware we are utilizing. Not material limited. ** Maximum diameter tested

3D-Paints

3D-Paints are composed primarily of the functional particle/powder rather than of non-functional polymer

Hyperelastic "Bone"

SHAH
 EAN Hyperelastic "bone": A highly versatile, growth factor–free, osteoregenerative, scalable, and surgically friendly biomaterial

Cover edicine

A. E. Jakus, R. N. Shah, *et al*. *Science Translational Medicine* **8**(358), 2016.

Hyperelastic Bone - A New Class of Biomaterials

90-95 wt.% Hydroxyapatite (High Bioactivity) Remains highly elastic

(Surgically Friendly)

No need for post-processing other than washing and sterilization

ROLL

90-95 wt.% Hydroxyapatite (High Bioactivity) Yet Flexible

3D-Printing: It's no longer just for anatomy matched implants

Mass Production Limited-Production Patient-Specific Implants

New processes are leading to fabrication rates 10-100x faster than existing additive (or even subtractive) manufacturing processes

Note: Objects not shown to scale

AE Jakus and RN Shah et al. *Science Translational Medicine.* 8(358), 2016.

Mechanical Properties

Patient CT Scan-Render Defect Volume -> 3D-Print -

In Collaboration with: Pravine Patel, MD Lingping Zhao, PhD Yu-Hui Huang UIC Craniofacial Center

Load Bearing Capacity of HB

Max. Load = 650 N (150 lbs)

MECHANICAL PROPERTIES: THE MECHANISM

Dec 50000000

Bending

800800

As Printed

Elastomer carries the mechanical Loads ("Like rocks joined by rubber bands")

HB v. Common Polymer-CaP Composites: *Microstructural and Mechanical Property Differences*

HOT-MELT FDM 3D-PRINTED (1:4 Ceramic:Polymer by volume)

ROOM TEMP HYPERELASTIC BONE **(4:1 Ceramic:Polymer by volume)**

Surface dominated by polymer (HA bioactivity is shielded)

50 wt.% Ceramic

Surface dominated by HA particles (Biologically Beneficial)

90 wt.% Ceramic

Exact same polymer, exact same ceramic

HB: Microstructural & Absorption Properties

HB is $~50\%$ porous (material porosity)

hMSC Proliferation and Osteogenic Differentiation

Osteopontin

Collagen I

hMSCs

Female human mesenchymal stem cells are viable

Note: This was all performed in simple DMEM media without osteogenic factors

IN VIVO: BIOCOMPATIBLIITY \rightarrow MOUSE

90 wt% HAp

Room-Temp. Printed From Liquid Ink

Hyperelastic Mech. **Properties**

50% Porous

50 wt% HAp

Hot-Melt Printed From Powder Mixture

Very Brittle

Near Fully Dense

Day 35 H&E

SHAH
LEAM

IN VIVO: SPINAL FUSION \rightarrow RAT

Male Sprague Dawley Rat Posterlateral Placement

HB (+BMP) HB (-BMP)

HB in Rat Spinal Fusion Model

 1_{mm}

Collaboration with Erin & Wellington Hsu (Orthopedic Surgery) and Stuart Stock Hyperelastic Bone is as effective as demineralized bone matrix And can potentially serve as an effective carrier for growth factors

Transverse Processes

IN VIVO: FULL-THICKNESS CRANIAL DEFECT → LARGE PRIMATE ै

In collaboration with Prof. Lee Miller and Group (NU)

HB in Large Primate Calvarial Defect Case Study

"Easy to shape and press fit into irregular defect site"

Evidence of new bone formation at Skull-HB interface by 4 weeks

2 nd HB Cranial Implant (Same Monkey) after 13 months

2 nd HB Cranial Implant (Same Monkey) after 13 months

Room-temperature processing and 3D-printing permits incorporation of bioactive factors that would otherwise be inactivated at elevated temperatures

(bottom) incorporated green fluorescent protein.

> Bioactive factors, antibiotics, and small molecules can be incorporated directly into the inks

3D-Graphene

Three-Dimensional Printing of High-Content Graphene ScAFFolds for Electronic and Biomedical **APPLICATIONS**

808156 ALDRICH

3D Printing Graphene Ink

Currently Available through Millipore Sigma (Cat.# 808156)

A.E. Jakus & R.N. Shah. *Material Matters***. 11(2). 2016.** *Millipore Sigma***. A.E. Jakus, R.N. Shah,** *et al***.** *ACS Nano* **2015;9(4):4636-4648.**

3D-PRINTING CONSISTENCY

SHAND

Solid Structures from Liquid 3D-Ink Extrusion

No drying time required before handling objects

<10 vol.% graphene

3DG MICROSTRUCTURE AND FLAKE ALIGNMENT

There is a degree of flake alignment along the length of extruded fibers. Graphene flakes are stacked within fiber interiors.

PHYSICAL FLEXIBILITY

3DG Sheets can be rolled, folded, and cut

This permits architectures that could not be produced directly through 3D-printing to be created.

Electrical Conductivity

Biocompatibility: In Vitro

mesenchymal stem cells
Day 7: Distinct Cell Morphologies

Neurogenic Differentiation

Mesenchymal stem cells in simple basal medium + FBS No neurogenic factors or stimulus other than material

IN VIVO BIOCOMPATIBILITY STUDIES

X-Section 7 days after implantation

90˚ 3DG and Lowtemperature-printed PLGA Scaffolds Subcutaneously Implanted

Surgeries performed by Sue Jordan, MD PhD

Scalability and Surgical Handling

Wrap Roll Cut Fold Suture Fuse Adhere

1 cm **5 Separate parts Fused after printing**

Ongoing Innervation (Nerve into Muscle) Rat Model In Vivo Studies

From few...

...To many

Multi- & MIXED-MATERIAL 3D-PAINTING

A. E. Jakus & R. N. Shah. **Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering.** *Biomedical Materials Research Part A;* 105A(1) A. 2017*.*

Towards an infinite 3D-ink palette... mixing 3D-inks

Separate inks can be co-3D-printed into multi-material systems

Compound inks can be made by mixing powders or already made inks

HB-3DG: 3D-Printability

Vertical Large Area

HB-3DG **prints just as well as** *Hyperelastic Bone* **and** *3D-Graphene*

Videos at 64x speed

Microstructure and Porosity

HB -3DG surface dominated by graphene \rightarrow More similar to 3DG

HB -3DG Porosity → More similar to 3DG

Electrical Properties

HB -3DG, **although not as conductive as 3DG, still exhibits higher conductivity than the majority of previously reported systems**

> **Typical particle loading and conductivities achieved by others in 3D printed carbon composite systems**

In Vitro **Response**

4 mm-diameter scaffolds punched from larger 3D-printed sheets

Seeded with 50k human mesenchymal stem cells

Tailoring Biological Properties with Mixed Inks

hMSCs HB-3DG show a mixed neuro/osteo response

"TISSUE PAPERS" FROM ORGAN-SPECIFIC DECELLULARIZED = Extracellular Matrices

Jakus AE, Laronda MM, Rashedi AS, Robinson CM, Lee C, Jordan SW, Orwig KE, Woodruff TK, Shah RN. Surgically friendly "Tissue Papers" from Organ-Specific Decellularized Extracellular Matrices. *Advanced Functional Materials* 2017. In Review.

What if the powder in 3D-Paint was biological tissue?

"Tissue Paper" Fabrication - Process Conserved

60-70 vol.% dECM 30-40 vol.% PLGA

No elevated temperatures

No chemical digestion

No chemicalcrosslinking

Tissue Independent

Tissue Papers - Microstructures and Collagen Content

Tissue Papers - Real World Handling

Tissue Papers - Human Mesenchymal Stem Cell Culture

Green = Live Red = Dead Blue = TP (Collagen)

OTP - Rhesus and Human Ex Vivo Cortical Strip Culture

Preserved the health and function of human ovarian tissue more than 8 weeks after the donor had perished

In collaboration with Teresa Woodruff, PhD; Monica Laronda, PhD; Alexandra Rashedi

Tissue Paper - Additional Versatility

3D-Printing Substrates

"Graft" onto 3DP structures

Metallic Architectures from 3D-Printed Powder-Based Liquid Inks

DVANCED

Jakus AE, Taylor SL, Geisendorfer NR, Dunand DC, Shah RN. Metallic Architectures from 3D-Printed Powder-Based Liquid Inks. Advanced Functional Materials 2015;25(45):6985-6995.

Taylor SL & Jakus AE, Shah RN, Dunand DC. Iron and Nickel Cellular Structures by Sintering of 3D-Printed Oxide or Metallic Particle Inks. Advanced Engineering Materials 2016; In Press.

"TRADITIONAL" METAL AM

ENERGY-BASED

"Additive Manufacturing"

Laser Sintering (Powder Bed)

Laser Melting (Powder Bed)

Laser Metal Deposition

Originally Pioneered by 3D Systems

Electron Beam Melting (Powder Bed)

Stereolithography_{for metals)} (Monomer Bath)

Instrument Driven

An established process:

Been in use for 30 years

High-power energy beam

"TRADITIONAL" METAL AM \rightarrow POWDER-BEDS + ENERGY

Generic Powder-Bed + Energy Scheme

Material Criterion

1) Chemically stable powders (pre-alloyed) 2) Specific powder size and morphology 3) Can be sintered or melted rapidly (excludes most ceramics and many metals and alloys) 4) Does not reflect or scatter energy beam

Parts must be extracted from powder bed and cleaned after completion

Metals and Alloys from 3D-Painted Rusts

101

From Raw Oxide Powder to Metallic Architecture

Oxide Powders and 3D-Inks

Typically, 1-10 µm or -325 mesh (commercial)

Dry powder mix \rightarrow Make Ink

Wet mix pre-made inks

Ink synthesis independent of powder chemistry

Manipulating Iron Oxide Sheets

No need to re-wet. Remain flexible for at least 4 years.

3D-Printing → Thick & High Aspect Ratio

Many hundreds of 3D-printed layers (Currently limited by build space of 3D-printer)

Scrap material can be dissolved/suspend in appropriate quantity of solvents to make 3D-printable ink

3D-Printing Metals and Other Compounds

Further Expanding the 3D-Paint Palette...

3D-Paint synthesis and 3D-printing behavior independent of powder

ROBUST AND ELASTIC LUNAR AND MARTIAN Structures from 3D-Printed Regolith INKS

Jakus AE, Koube KD, Geisendorfer NR, Shah RN. Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Ink. Scientific Reports. 2017; 7(44931). *NASA.Gov*

Lunar (LRS) and Martian (MRS) Inks

Despite distinct particle morphologies, LRS and MRS inks behave very similarly

LRS and MRS Large Diameter Extrusion Demonstration

Lunar Regolith Simulant Martian Regolith Simulant

3D-Printable over a wide range of parameters (speed, pressures, nozzle diameter)

Static and Cyclic Tensile Properties of 3DP LRS and MRS

As-3D-Printed LRS and MRS materials have "rubber-like" mechanical properties

Both 3D-painted LRS and MRS can be elastically and plastically mechanically manipulated

Additional Physical Manipulations of 3D-Painted MRS and LRS

Like all 3D-painted materials, 3DP LRS and MRS can be "polished" with solvent application and also cleanly cut

Cells, Tissues, and Organs **Metals & Alloys** -----------------------

Near-Limitless **Materials**

On any extrusionbased platform

Multi-**Materials**

Ceramics

Biomaterials

Shah TEAM Lab

Alexandra Rutz, PhD Shannon Taylor Phillip Lewis Jimmy Su Danielle Duggins Nick Geisendorfer Emma Gargus Christina Robinson Kelly Hyland Chris Lee

ShahLab.Northwestern.Edu

A-Jakus@Northwestern.edu Ramille-Shah@Northwestern.edu

Sue Jordan, MD/PhD Monica Laronda, PhD Alexandra Rashedi

Collaborators

Kelly Whelan

Zhan Gao, PhD Ethan Secor

Chawon Yun, PhD

Collaborating PIs

Prof. David C. Dunand, PhD Prof. Scott A. Barnett, PhD Prof. Stuart Stock, PhD Prof. Teresa K. Woodruff, PhD Prof. Erin Hsu, PhD Prof. Wellington Hsu, PhD Prof. Mark C. Hersam, PhD Prof. Robert Galiano, MD Prof. Lee Miller, PhD

Calling all Grad Students!

Have an innovation that will revolutionize the 3D printing industry? Apply to the Life Science Awards Program today!

Visit sigma-aldrich.com/3dp to learn more

Millipore