High Recovery Method of HybridSPE[®]-Phospholipid for Cleanup of Biological Samples Prior to LC-MS Analysis

Xiaoning Lu and Michael Ye

Supelco, Div. of Sigma-Aldrich, Bellefonte, PA 16823 USA

T411056

Outline:

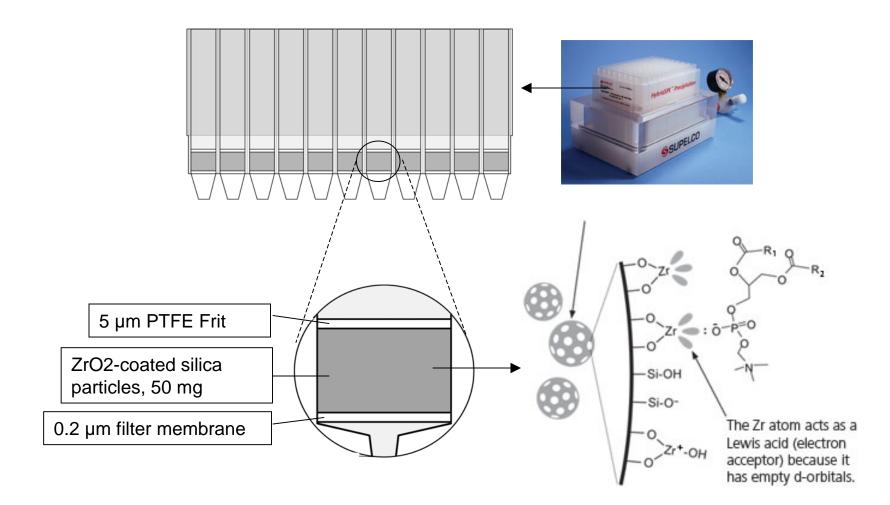
Brief Overview of HybridSPE

Case studies of low-rec compounds:

1. Strong Bases

2. Strong Acid

- 3. Neutral hydrophobic
- 4. Acid-liable compound


Summary

Overview of HybridSPE-Phospholipid

Functions: Protein precipitation and Phospholipid removal

- ✓ In-well protein precipitation via the addition of organic solvents, e.g. Acetonitrile and MeOH.
- PLs removal by proprietary zirconia-modified silica particles.
- \checkmark The operation is both simple and fast.

How Are Proteins and Phospholipids Removed?

Critical Conditions: Protein Crashing Solvent and Additives

Protein precipitation efficiency

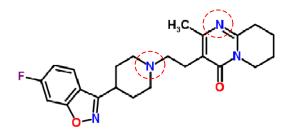
Phospholipid removal

Compound recovery

Primary method: ACN w/ 1% formic acid

One of the common methods used in bioanalyses. The recommended method when the product was launched.

Good recovery from HybridSPE for many of our tested compounds.



Case 1: Strong Bases

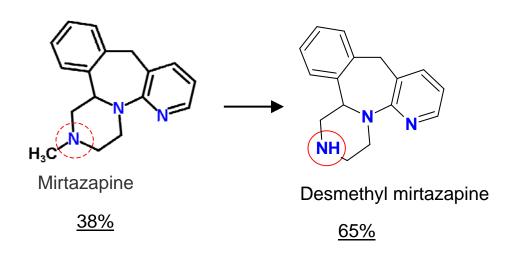
Eluate 8,3 ng/mL		Structure Formula		Hora Carlo	Hot . Hot							an an		
	composition %			Recovery [%]										
Sample Name	ACN	MeOH	Formic Acid	Amitriptylin	Nortriptylin	Citalopram	Clozapin	Trazodon	Mirtazapin	Desmethyl mirtazapin	Olanzapin	Risperidon	Hydroxy- risperidon	
Standard				100	100	100	100	100	100	100	100	100	100	
Probe F8			4.0	106	106	95	88	93	38	65	13	42	84	
Probe F9			1.0	101	111	95	91	97	42	70	13	45	85	
Probe F10	100	0	1.5	105	113	99	88	97	41	66	17	45	81	
Probe F11	100	U	1.5	110	112	101	96	101	45	72	17	52	85	
Probe F12			2.0	89	95	86	57	85	20	45	7	18	63	
Probe G1			2.0	110	115	106	104	93	50	56	39	68	92	
Probe G2			1.0	77	82	74	68	73	33	51	13	38	60	
Probe G3			1.0	95	102	90	87	88	45	64	15	53	75	
Probe G4	90	10	1.5	77	85	73	57	76	24	48	7	25	60	
Probe G5			1.5	94	102	90	77	93	40	61	24	48	74	
Probe G6			2.0	53	60	52	21	53	7	20	3	7	30	
Probe G7				92	97	86	71	86	33	61	16	34	72	
Probe G9			L	1.0	73	81	70	58	75	30	47	12	35	55
Probe G10	70	20	20 1.5	92	100	84	71	90	33	60	15	34	70	
Probe G11	70	30		75	82	67	57	75	33	46	15	39	59	
Probe G12			2.0	72	80	68	37	71	16	37	5	16	48	
Probe H1 Probe H2	-		10	76 91	85 97	71 80	66 80	78 90	42	49 66	29 32	52 46	60 69	
Probe H2 Probe H4			1.0	57	97 65	51	35	90 61	40 15	30	32 6	46 16	69 36	
Probe H4 Probe H5	50	50 50	1.5	63	71	58	53	65	35	42	24	45	51	
Probe H6				65	75	63	47	68	25	36	19	32	47	
Probe H7			2.0	62	69	56	40	65	23	33	16	29	42	

Case 1: Strong Bases

NR3(+) Vs Recovery:

Risperidone

Mirtazapine



Olanzapine,

<u>42%</u> <u>2 -NR3 groups</u> <u>38%</u> <u>3 -NR3 groups</u> <u>13%</u>

3 -NR3 groups

Improved Recovery with Less – NR3 Group

Improved Recovery with Salts

Recovery	of Standard	Without Ma	trix Plasma		
Analyte	MeCN/1%FA	МеОН	MeOH/1%NH4FA	MeOH/1%NH4CI	MeOH/150 mM NaCl
Mirtazapine (266/195)	0.0	13.2	96	38.2	99.0
Risperidone (411/191)	0.0	10.4	99.1	111.6	64.0
Olanzapine (313/256)	0.0	13.6	89.4	NO experiment	74.0

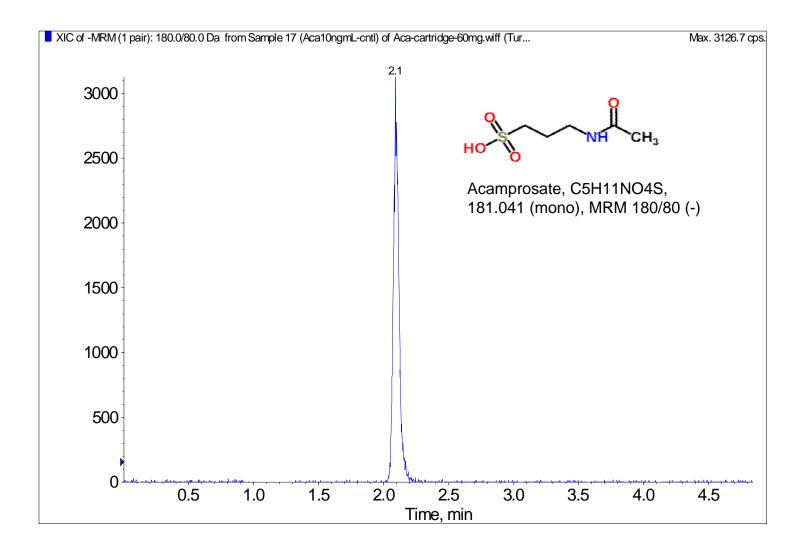
Learning from Case 1- Strong Bases:

- The low recovery bases typically have at least one –NR3 groups.
- The low recovery very likely due to cationexchange interactions with the Silica support.
- The ion-exchange interactions were effectively suppressed by the addition of salts such as NH4FA, NH4CI, and NaCI.
- Methanol is a better solvent for the salt additives than MeCN.

Case 2: Strong Acid

CH₃ JH н

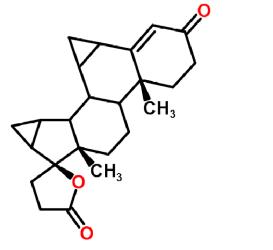
Acamprosate, Zero recovery from HybridSPE plates or cartridges !



High Recovery with the Addition of NH₄ClO₄

Recovery of Acamprosate std from Hyl	oridSPE 96-well plate	
		Standard Deviation
Conditions	Recovery (%)	(%)
ACN/1% formic acid	19.0	1.7
MeOH/1% ammonium formate	43.3	5.2
MeOH/2% ammonium formate	54.2	3.3
MeOH/5% ammonium formate	6.5	0.9
MeOH/1% ammonium malate	39.1	3.5
MeOH/100mM ammonium perchlorate	84.2	8.1
MeOH/200mM ammonium perchlorate	100.7	8.8

High Recovery with Fast Separation of Strong Acid

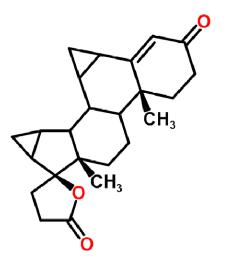

© 2011 Sigma-Aldrich Co. All rights reserved.

SIGMA-ALDRICH

Case 3: Neutral Hydrophobic

Drospirenon problems:

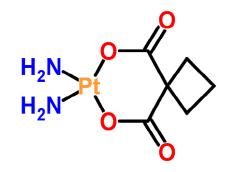
- 1. Low Rec
- 2. Variation of recovery 15-30%



Drospirenone, C24H30O3, MW 366.227 (mono), ACD/LogD (pH 7.4): 3.16 MRM: 367.2→97.1 or 91

Possible Causes:

- 1. Low solubility in MeCN
- 2. Strong affinity to transporter proteins


Drospirenone, C24H30O3, MW 366.227 (mono), ACD/LogD (pH 7.4): 3.16 MRM: 367.2→97.1 or 91

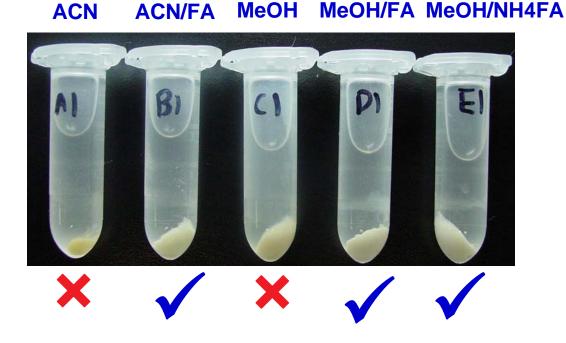
Nice Recovery and Reproducibility with MeOH/1%NH₄FA

	Recovery of Drospirenone Spiked in Rat Plasma			
Replicate	10 ng/mL spike	60 ng/mL spike		
1	89.9	91.9		
2	87.0	93.7		
3	91.8	88.4		
4	96.9	93.5		
5	91.9	90.4		
6	91.0	87.4		
7	94.2	87.5		
8	97.0	88.0		
9	86.1	87.5		
10	87.0	87.9		
11	84.0	87.8		
12	86.9	87.7		
Avg	90.3	89.3		
STD	4.3	2.4		
%CV	4.7	2.7		

Case 4: Acid-liable Compounds

Carboplatin:

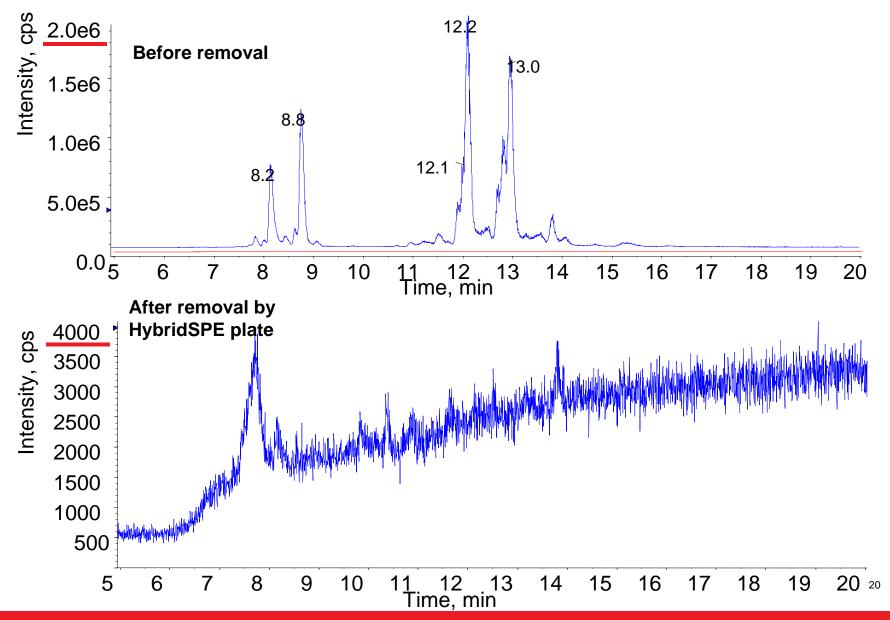
<u>Recovery</u>	Protein Precipitation Conditions
20%	ACN/1% formic acid
85%	MeOH/1% NH ₄ FA


Summary of Learning:

Addition of salt additives, e.g. NH4FA and NH4ClO4, is necessary to reduce the non-specific bindings, and therefore improve the recoveries of both strong acids and bases.

Many of the salt additives are not soluble in MeCN, but soluble in MeOH.

MeOH/salts may be a better protein crashing condition.


Protein Precipitation in ACN and Methanol

Comparable Results with Methanol.

Phospholipid Removal – PCs at 184 and 104

SIGMA-ALDRICH"

Conclusion: MeOH/Salt additive is an alternative protein crashing method for HybridSPE

- Comparable efficiency in protein precipitation and phospholipid removal.
- Improved recovery for strong bases and acids.
- Improved reproducibility for low soluble compounds in MeCN
- Improved recovery for acid-liable solutes.
- Alternative solvent if MeCN shortage is a concern.

Acknowledgement

<u>Collaborations:</u> Max Planck Institut Bayer-Germany Covance

Thanks!

