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Figure 1. Scaffold modifications and effects on gene knockdown (A) Diagram showing 
improvements to the CRISPRi sgRNA scaffold. (Adapted from Chen et al., 2013 Cell)1. 
Nucleotides in purple were modified including an A-U flip and extending of the stem loop. 
(B) Graph shows relative expression levels of target genes in stable KRAB-dCas9 cells as 
determined using qRT-PCR, comparing different guide scaffolds. Bars in cyan represent sgRNAs 
without modified scaffolding; bars in red represent sgRNAs of identical sequences containing 
the modification and showing significant improvement in knockdown efficiency. HEY1 and HES1 
represent easy-to-repress targets. CANX represents a difficult-to-repress target. NES previously 
showed high levels of inconsistency across guides. 
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The power of CRISPR for genome 
engineering, coupled with the 
ability to perform large-scale, whole 
genome, loss-of-function screening 
has allowed for new breakthroughs 
identifying gene pathways in drug 
resistance and disease. CRISPR 
is most commonly used to create 
double-stranded breaks that often 
result in loss of gene function 
(CRISPR-KO). However, the full 
extent of CRISPR’s utility extends 
beyond just targeted cutting 
of DNA. Nuclease-independent 
applications of CRISPR provide all 
the targeting specificity but for 
delivery of cargo, such as effector 
domains for activation (CRISPRa) 
or repression (CRISPRi) of target 
gene expression. CRISPRi allows for 
targeted inhibition of gene function 
by delivering transcriptional 
repressor domains to a specific 
target sequence using modified 
dCas9+gRNA complexes. Gene 
knockdown is complementary to 
CRISPR-KO and CRISPRa, and has 
distinct advantages over existing 
loss-of-function strategies like RNAi. 

Although these systems have 
evolved in recent years to 
accommodate numerous 
modifications, relatively few 
advancements have been made to 
eukaryotic CRISPRi technologies. 
However, in Figure 1 we outline one 
such enhancement. 

CRISPRi Whole Genome 
Libraries

Data Sheet

The life science business of Merck  
operates as MilliporeSigma in the  
U.S. and Canada.



2

Comparison of Systems 

To further ensure the most efficient knockdown possible, we tested alterations to the CRISPRi 
system, reported in the literature. Scientists performed a series of experiments comparing 
Krüppel-associated box (KRAB) to MeCP2 as the primary transcriptional repressor, results 
are reported in Figure 2. We also compared knockdown efficiency in top-ranked guides from 
different algorithms, results are reported in Figure 3. 
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Figure 3. Comparison of expression levels using the Sigma-Aldrich® CRISPRi system compared to competitors. Graph 
shows relative expression levels of CHECK1 and CANX, two difficult-to-repress gene targets in stable KRAB-dCas9 cells 
as determined using qRT-PCR, comparing the highest ranked guides from two different algorithms. The Sigma-Aldrich® 
CRISPRi guides showed up to 72% more efficient gene knockdown compared to competing algorithms in all sites analyzed. 
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Figure 2. Sigma-Aldrich® KRAB-dCas9 drives superior targeted knockdown efficiency. (A) Diagram of construct 
developed by Sigma-Aldrich®. (B) Diagrams of constructs adapted from Yeo et al.2 with an additional MeCP2 domain 
added to the KRAB domain. (C) Graph shows relative expression levels of target genes in stable CRISPRi cells as 
determined using qRT-PCR. The Sigma-Aldrich® system shows superior knockdown efficiency when compared to the 
MeCP2 system in all targets tested. Demonstrated in CHEK1 and CANX, known difficult-to-repress targets as well as a 
target that knocks down more efficiently in this cell line, NES. 
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Experimental Controls 

It is critical in any experiment to utilize the appropriate controls. A negative, non-targeting 
control (NTC) ensures a baseline and prevents false positives. Positive controls are most 
efficient and universal when they exhibit consistent expression across multiple cell and tissue 
types. The Sigma-Aldrich® RAB1A positive control provided the best generalized knockdown 
across multiple cell lines, as cited in literature by Gilbert et al.3 as a top control target. While 
not necessary for negative controls, positive controls should always be validated in your 
individual experimental context. 

Figure 4. RNA expression and knockdown of RAB1A positive control. (A) The human protein atlas RNA expression 
overview. X-axis illustrates cell lines arranged by tissue type, showing consistent expression across most tissues, making 
it an ideal control for gene knockdown. Y-axis plots relative RNA expression levels (B) Sigma-Aldrich® sgRNAs were 
delivered via lentivirus into stable KRAB-dCas9 cell lines (A375, HEK293, A549) and assessed by qRT-PCR after 6 days. In 
all 3 cell lines gene knockdown was greater than 80%.
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Screening with CRISPRi has the potential to reveal new genes involved in relevant drug and 
cellular phenotypes. Our screens identified a requirement for TP53 in paclitaxel-mediated cell 
death, especially at the lower dose. TP53, a known tumor suppressor gene, has previously 
been implicated in PAX resistance.5,6 Strikingly, we observed significant enrichment of NF2 
(neurofibromatosis type 2) in both dose level treatments. NF2, which encodes the protein 
merlin, plays a pivotal role in tumor suppression by restricting proliferation and promoting 
apoptosis, and has not been previously implicated in paclitaxel-mediated cell death. Loss of NF2 
can compromise Hippo pathway activity, potentially leading to multidrug resistance.8 The cellular 
context through which NF2 suppression promotes Paclitaxel resistance may prove important for 
overcoming resistance to anti-cancer therapies. CRISPRi, especially when used in combination 
with complementary screening approaches (e.g. CRISPR-KO, CRISPRa, shRNA), represents a 
powerful strategy to discover and dissect genes and pathways that govern cellular function.

Figure 5. Genomic enrichment screen for Paclitaxel (PAX) resistance using CRISPRi. A549 NSCLC cells stably 
expressing KRAB-dCas9 were transduced with a CRISPRi gRNA library subpool containing up to 5 guides targeting genes 
relevant to cancer/apoptosis. Guide enrichment was driven by resistance to varying doses of PAX compared to an untreated 
control. (A) Fold change of guides between control and 4nM, low-dose PAX-treatment. (B) Fold change of guides between 
untreated control and 25nM, high-dose PAX-treatment. The top 5 genes are indicated. Significantly enriched genes are 
highlighted in red. The analysis and graphs were generated using MAGeCK 0.5.9.4 and MAGeCKFlute 1.10.0 (Wang et al.7) 
with R 4.0.2, using the default parameters except for the fold change parameter, which was not log2-normalized.
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Enrichment Screening:

CRISPRi screening allows researchers to study thousands of genes at once and assess 
their function in a single experiment, greatly expediting the identification and validation of 
novel drug targets or understanding genes in their underlying role in health and disease. 
We performed a genome-scale enrichment screen using CRISPRi to implicate new genes 
and pathways responsible for resistance to Paclitaxel (PAX)-mediated cell death in human 
lung adenocarcinoma (A549) cells. Cells were exposed to varying doses of PAX to achieve 
enrichment of resistant cells. We focused our approach using SigmaAldrich® CRISPRi cancer 
and apoptosis subpools (CRISPRI02-1KT). A549 cells stably expressing KRAB-dCas9 were 
transduced with a pool of lenti guide RNAs for two replicates. The 4nM low dose allowed for 
enrichment by driving varying rates of proliferation. The 25nM high dose killed off most cells, 
and those remaining proliferated relatively normally to achieve optimal enrichment. 
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