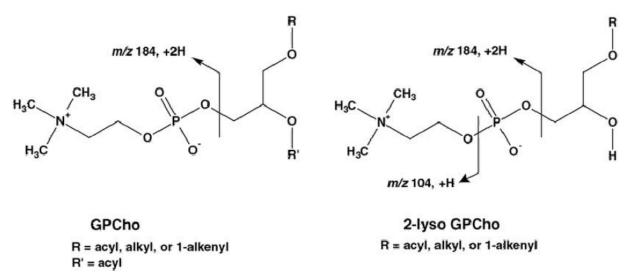
Recovery of Pharmaceutical Drugs From Small Volume Biological Sample Using HybridSPE-PPT 96-well Plate

Matilal Sarker, Craig Aurand, Xiaoning Lu, and Michael Ye

Supelco, Div. of Sigma-Aldrich, Bellefonte, PA 16823 USA

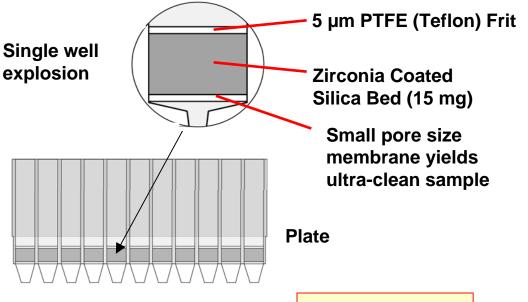
Presentation Outline


- Introduction
- HybridSPE-PPT for Protein Precipitation and Phospholipid Removal
- Elution Volume and Reproducibility
- Applications
- Conclusion

Phospholipid In Biological Sample

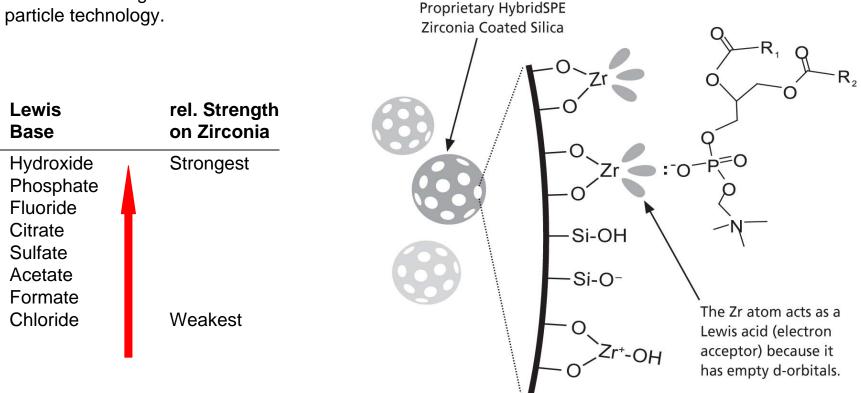
"In the case of LC-MS-MS-based procedures, appropriate steps should be taken to ensure the lack <u>of matrix effects</u> throughout the application of the method..." Guidance for Industry Bioanalytical Method Validation, FDA, 2001

Bioanalytical chemists routinely monitor for phospholipid fragment ions m/z 184 & m/z 104 during method development/validation

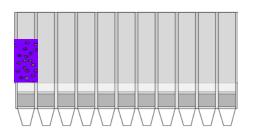

- Used as a marker for ion-suppression risk assessment during LC-MS/MS (co-elution of analytes of interest with matrix-laden regions)
- · Determine selectivity effectiveness of sample prep technique

J.L. Little et al. / J. Chromatogr. B 833 (2006) 219-230

HybridSPE-PPT 96-Well Schematic Diagram


- Removes both phospholipids and precipitated proteins.
- Couples the simplicity of protein precipitation with SPE formats designed for highly selective removal of interfering phospholipids.
- Simple 2-3 step generic procedure- virtually no method development.
- Ideal for high throughput preclinical and clinical applications where sample prep speed, selectivity, and reduced ionsuppression is of great importance.
- Unique (patent-pending) technology developed by Supelco.

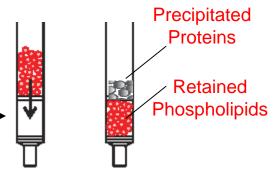
96-well format employs special frits at the top and bottom of the same selective bed; proteins *can be removed on-line* for added speed and convenience.


HybridSPE-PPT Interaction

The selective extraction of phospholipids is achieved using a novel zirconia-coated particle technology.

Interaction between a representative phospholipid and the zirconium surface of the HybridSPE-PPT particle via Lewis acid-base interaction.

In-Well Precipitation Schematic for HybridSPE-PPT


1) Precipitate Proteins: Add 20 μL plasma/serum to the HybridSPE-PPT Small Volume plate followed by 60 μL 1% formic acid in acetonitrile. Add I.S. as necessary. Note: the upper PTFE frit keeps plasma from dripping through packed-bed prematurely.

2) Mix by vortexing HybridSPE-PPT Small Volume plate or by aspirating/dispensing with 0.5-1 mL pipette tip. A cover plate may be used to avoid crosscontamination.

4) Resulting filtrate/eluate is free of proteins and phospholopids and ready for immediate LC-MS/MS analysis; or it can be evaporated and reconstituted as necessary prior to analysis

3) Apply vacuum. Packed-bed filter/frit assembly acts as a depth filter for the concurrent physical removal of precipitated proteins and chemical removal phospholipids. Small molecules (e.g., pharma compounds and metabolites) pass through unretained.

6

Phospholipid Removal and Capacity

Sample Preparation:

- 20 μL rat plasma + 60 μL MeOH/1%AF (or ACN/1%FA)+cover
- Mix by shaking at 1000/min for two minutes
- Apply Vacuum 10 inHg for two minutes
- Transfer and analyze by LC-MS-MS

Phospholipid Removal and Capacity (contd.)

Plasma Vol (μL)	No. of Sample	Average % removal
20	8	98.9
20	4	99.8
30	4	96.4
40	4	77.4
50	4	49.2
60	4	41.6

Elution Volume

Plate No 1: Crush Solvent – Acetonitrile/1%Formic Acid

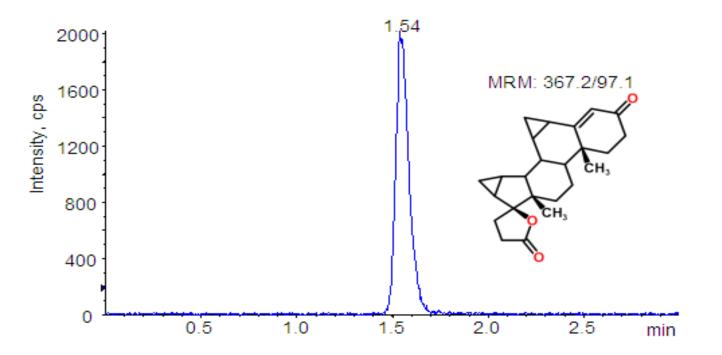
	COL 1	COL 2	COL 3	COL 4	COL 5	COL 6	COL 7	COL 8	COL 9	COL 10	COL 11	COL 12
Α	28	39	42	34	31	43	35	37	41	40	40	40
В	38	31	44	35	42	40	35	33	40	37	35	35
С	38	42	43	36	41	41	38	42	34	32	38	40
D	34	44	30	43	37	40	36	35	35	35	41	31
E	28	41	30	43	42	39	38	37	35	40	37	36
F	39	39	36	34	36	41	38	39	35	36	40	31
G	28	32	40	41	38	37	41	42	39	42	35	29
н	33	36	30	40	31	38	40	31	32	28	36	35
AVERAGE	33	38	37	38	37	40	38	37	36	36	38	35
STDEV	4.8	4.7	6.2	3.9	4.5	1.9	2.2	4.0	3.2	4.6	2.4	4.1
%CV	14.4	12.3	16.7	10.2	12.0	4.7	5.8	10.7	8.8	12.7	6.3	11.9
Overall ave	36.9											
overall std	4.1		Volume n	neasure	ed in µL	in µL						
%CV	11.2											

Elution Volume (contd.)

Sample Preparation:

- 20 μL rat plasma + 60 μL ACN/1%AF+cover
- Mix by shaking at 1000/min for two minutes
- Apply Vacuum 10 inHg for two minutes
- Measure volume by 50 µL HPLC syringe

Recovery of Neutral and Basic Compounds

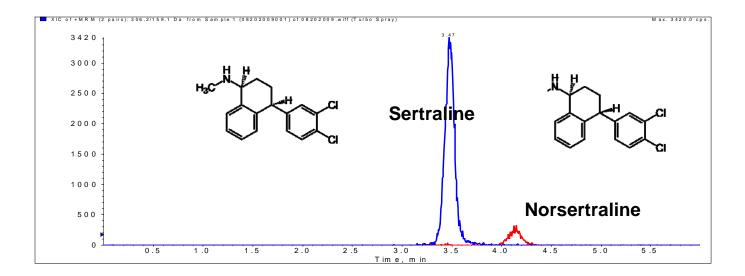

Sample Preparation:

- Spike compounds into rat plasma at the specific conc.
- Load 20 μ L of the spiked rat plasma (make sure the sample was loaded at the bottom of the wells).
- Add 60 µL methanol with 1% ammonium formate
- Mix gently by hand for 1 min
- Cover the plate, and pull the vacuum at 10 inHg for 2 min.
- Transfer 20 µL of the flow-through into a sample vial
- Adjust the sample solvent composite to be compatible with the running LC mobile phase by adding a certain amount of water. For instance, 10 µL water was added to the 20 µL of flow-thru drops sample to adjust the solvent composition to 50% methanol while the running HPLC mobile phase for drops is 60% methanol.

Recovery of Neutral and Basic Compounds (contd.)

	Drospirenone 20 ng/mL spike	Risperidone 8 ng/mL spike	Mirtazapine 8 ng/mL spike	Tiapride 8 ng/mL spike
Class	Neutral compound	Basic	Basic	Basic-chelator
Structrue	CH ₃	F-C-T-T-	H ₃ C	H,COCH, CH, CH, NH
1	103.5	84.3	68.0	25.6
2	98.3	93.5	74.2	26.8
3	109.6	92.7	73.8	24.9
4	115.7	93.3	75.0	28.0
5	104.0	89.3	70.7	24.3
6	107.6	93.8	75.6	28.5
7	101.5	89.9	71.2	26.5
8	112.9	93.2	73.6	25.6
vg	106.6	91.3	72.8	26.3
TD	5.9	3.3	2.6	1.5
%CV	5.5	3.6	3.5	5.6

Analysis of Drospirenone

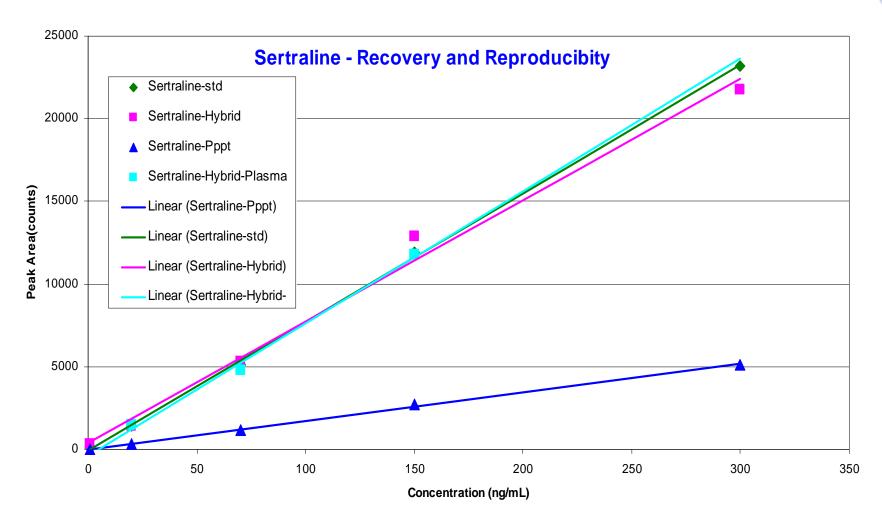


LC-MRM on Q-Trap 3200 w/ Agilent 1100 LC, column Express RP-Amide, 2.1 mm x 5 cm x 2.7 um x 100 A, 20 ng/mL Drospirenone, 3 uL injection

HPLC Isocratic: 60%B

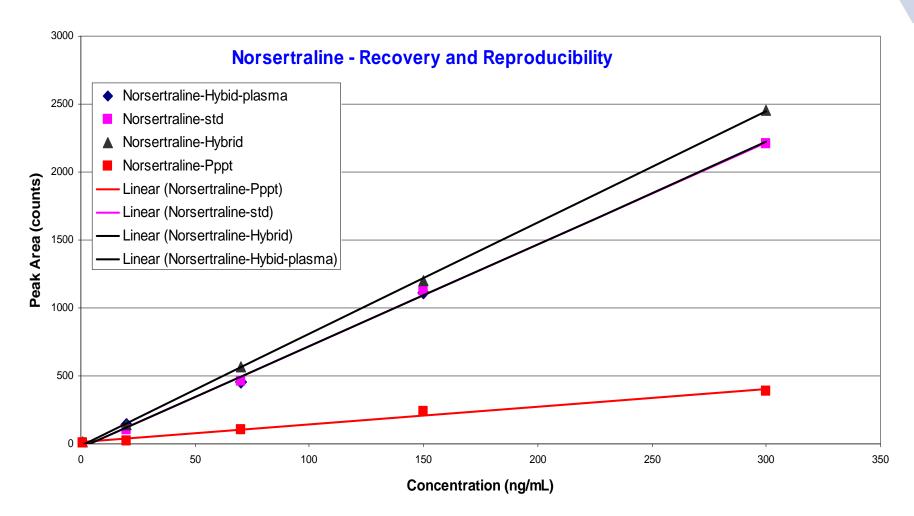
- A: 10 mM NH₄FA/0.1%FA in H₂O (pH ~4.5)
- B: 10 mM NH₄FA/0.1%FA in MeOH/ACN (1:1)

Sertraline and Norsertraline Recovery

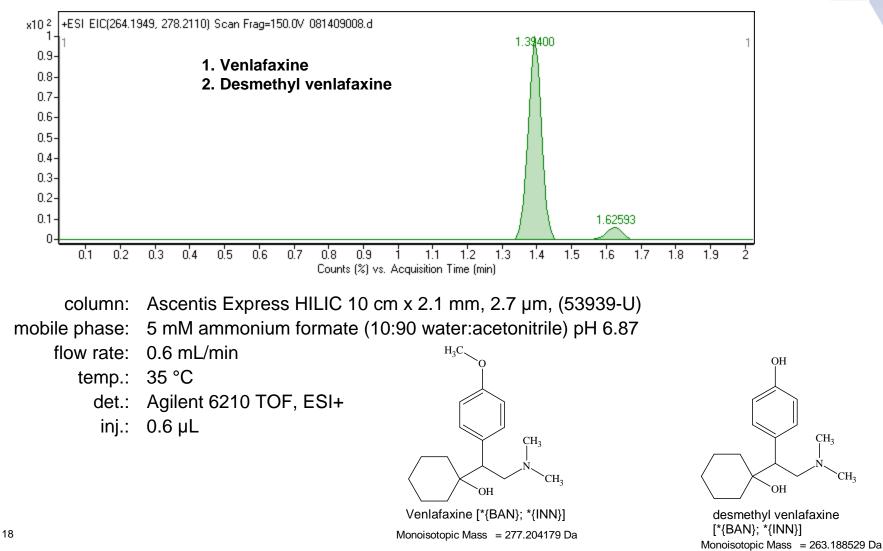

column: Ascentis Express 10 cm x 3 mm, 2.7 μm mobile phase A: 65% 10 mM ammonium formate pH 4.3 mobile phase B: 35% 10 mM ammonium formate (95:5 acetonitrile-water), pH 4.3 flow rate: 600 μL/min temp.: 55 °C det.: MRM Q-Trap 3200

inj.: 2 µL

Sertraline and Norsertraline Sample Preparation


- 1. **Standard** Standard samples were analyzed as is.
- Standard Hybrid 80 µL standard samples were taken in each well and pass through and collected in sample collection plate. Samples were transferred in HPLC vials.
- Plasma Hybrid Spiked rat plasma (20 μL) samples and crush solvent (60 μL), precipitated in plate, pass through and collected in a sample collection plate. Samples were transferred in HPLC vials.
- Protein Precipitation Spiked rat plasma (20 μL) and crush solvent (60 μL) were taken in centrifuge tube, vortex and centrifuge. Supernatant liquid was taken in HPLC vial.
- 5. All final of the samples were same (1, 20, 70, 150 and 300 ng/mL)
- 6. Minimum three samples were in each concentration.

Sertraline and Norsertraline Recovery



SIGMA-ALDRICH

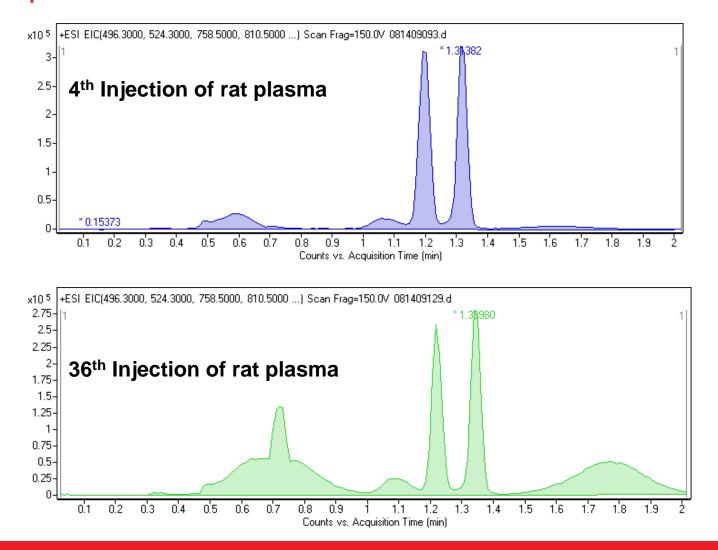
Sertraline and Norsertraline Recovery (contd.)

Increasing Throughput for HILIC Applications

SIGMA-ALDRICH

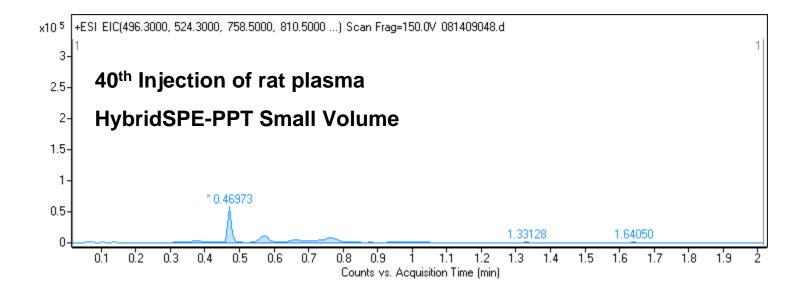
Sample Preparation

Standard Solutions: prepared in (3:1) 1% formic acid acetonitrile:water at a level of 25, 50, 100, 200, 300 ng/mL.


Plasma: spiked directly to a level of 100, 200, 400, 800, 1200 ng/mL.

HybridSPE-PPT Small Volume Plasma Samples: apply 20 μ L of plasma to plate, followed by 80 μ L of 1% formic acid acetonitrile. Agitate on vortex for 1 minute, place on vacuum manifold and apply 10"Hg vacuum for 2 minutes. Collect filtrate and analyze directly.

HybridSPE-PPT Small Volume Standard Solution: apply 80 μ L of standard prepared in (3:1) 1% formic acid acetonitrile:water. Agitate on vortex for 1 minute, place on vacuum manifold and apply 10"Hg vacuum for 2 minutes. Collect filtrate and analyze directly. Samples were prepared n=8.


Standard Protein Precipitation: apply 100 μ L of plasma to centrifuge vial, followed by 300 μ L of 1% formic acid acetonitrile. Agitate on vortex for 1 minute, place into centrifuge for 2 minutes at 15000 rpm. Collect supernatant and analyze directly.

Phospholipid Monitoring Standard Protein Precipitation

SIGMA-ALDRICH®

Phospholipid Monitoring HybridSPE-PPT Small Volume

Conclusion

- The HybridSPE 96-well plate combines the benefit of protein precipitation and SPE. It removes both proteins and phospholipids simultaneously. The HybridSPE-Small Volume plate allows processing small biological sample (20 to 30 µL).
- The HybridSPE-Small Volume plate demonstrated excellent recovery of most of compounds across the concentration range along with depletion of proteins and phospholipids from the plasma samples.
- Phospholipid buildup and resulting matrix ionization effect was demonstrated when performing standard protein precipitation techniques.
- The combination of facile protein precipitation/phospholipid depletion and fast analysis using modern chromatographic columns shows great promise in increasing the throughput for bioanalytical methods.