跳转至内容

Dear Customer:

The current international situation is complex and volatile, and uncertain tariff policies may potentially impact our product prices. Given these uncertainties, we value your understanding regarding order-related matters.

If you decide to place an order during this period, we reserve the right to adjust the price based on the evolving situation. We understand that market changes may cause inconvenience. We will negotiate with you if there’s a significant price fluctuation due to tariff policy changes before the order’s actual delivery, and in such cases we may adjust or cancel the order as necessary.

We are planning system maintenance between Friday, Apr 18 at 9:00 PM CDT and Saturday, Apr 19 at 9:00 AM CDT. This will impact both web and offline transactions, including online orders, quotes, price and availability checks, and order status inquiries. We apologize for any inconvenience.

For important updates on recent policy changes, please click here for more details.

Merck
CN
  • Brain region-specific immunolocalization of the lipolysis-stimulated lipoprotein receptor (LSR) and altered cholesterol distribution in aged LSR+/- mice.

Brain region-specific immunolocalization of the lipolysis-stimulated lipoprotein receptor (LSR) and altered cholesterol distribution in aged LSR+/- mice.

Journal of neurochemistry (2012-08-23)
Christophe Stenger, Anthony Pinçon, Marine Hanse, Laurent Royer, Audrey Comte, Violette Koziel, Jean-Luc Olivier, Thierry Pillot, Frances T Yen
摘要

Brain lipid homeostasis is important for maintenance of brain cell function and synaptic communications, and is intimately linked to age-related cognitive decline. Because of the blood-brain barrier's limiting nature, this tissue relies on a complex system for the synthesis and receptor-mediated uptake of lipids between the different networks of neurons and glial cells. Using immunofluorescence, we describe the region-specific expression of the lipolysis-stimulated lipoprotein receptor (LSR), in the mouse hippocampus, cerebellum Purkinje cells, the ependymal cell interface between brain parenchyma and cerebrospinal fluid, and the choroid plexus. Colocalization with cell-specific markers revealed that LSR was expressed in neurons, but not astrocytes. Latency in arms of the Y-maze exhibited by young heterozygote LSR(+/-) mice was significantly different as compared to control LSR(+/+), and increased in older LSR(+/-) mice. Filipin and Nile red staining revealed membrane cholesterol content accumulation accompanied by significantly altered distribution of LSR in the membrane, and decreased intracellular lipid droplets in the cerebellum and hippocampus of old LSR(+/-) mice, as compared to control littermates as well as young LSR(+/-) animals. These data therefore suggest a potential role of LSR in brain cholesterol distribution, which is particularly important in preserving neuronal integrity and thereby cognitive functions during aging.